4.7 Article

Effects of chemical pretreatments on material solubilization of Areca catechu L. husk: Digestion, biodegradability, and kinetic studies for biogas yield

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 316, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2022.115322

关键词

Lignocellulosic biomass; Arecanut husk; Alkaline pretreatment; Anaerobic digestion; Regression equation; Biomass composition

资金

  1. Ministry of Education, Govt. of India

向作者/读者索取更多资源

This study aimed to understand the pretreatment-aided anaerobic digestion of lignocellulosic residues and to assess the substrate solubilization capacity of pretreatment processes. The results showed that chemical pretreatment significantly increased biogas production and methane content. The study also recommended considering the biochemical composition of substrates for anaerobic digestion.
This study aimed to understand the pretreatment-aided anaerobic digestion of lignocellulosic residues and to assess the substrate solubilization capacity of pretreatment processes. We evaluated the feasibility of biogas production using chemically pretreated Areca catechu L. (Arecanut husk, AH). AH was pretreated for 24h at two different temperatures -25 ? and 90 ? with four different chemicals viz. H2SO4 (acidic), NaOH (alkaline), H2O2 (oxidative), and ethanol in 1% H2SO4 (organosolv) under each temperature. AH solubilization assessment included analyses of parameters such as volatile solids to total solids (VS:TS) ratio, soluble chemical oxygen demand, total phenolic content, and biomass composition. Alkaline pretreatment of AH at 90 ? resulted in the maximum biogas yield of 683.89mL/gVS, which was 2.3 times more than that obtained using raw AH without pretreatment. Methane content of biogas produced using AH pretreated with 2-10% of NaOH was found to be between 71.53% and 75.06%; methane content of biogas using raw AH was 62.31%. In order to describe the AH degradation patterns, biogas production potential from pretreated AH was evaluated using bacterial kinetic growth models (First-order exponential, logistic, transference, and modified Gompertz models). The modified Gompertz and logistic models (correlation coefficient > 0.99) were found to have the best fit of all kinetic models for the cumulative experimental biogas curve. We formulated a multiple linear regression equation depicting the biodegradability index (BI) as a technical tool to determine biomethane production; BI is represented as a function of biomass composition (cellulose, hemicellulose, and lignin), with a high correlation (> 0.95). Based on our analyses of AH pretreatment and substrate utilization for biogas production, we propose that the biochemical composition of lignocellulosic residues should be carefully considered to ensure their biodegradability when subjected to anaerobic digestion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据