4.7 Review

Two-dimensional ultrathin metal-based nanosheets for photocatalytic CO2 conversion to solar fuels

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 313, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2022.114916

关键词

Photocatalytic reduction; Carbon dioxide; Metal-based 2D nanomaterials; Solar fuels

向作者/读者索取更多资源

Artificially simulated photosynthesis has attracted great interest in increasing solar fuel efficiencies, and layered inorganic 2D nanosheets offer higher tunability. However, the applications of metal-based materials in photocatalytic CO2 reduction are still limited.
Artificially simulated photosynthesis has created substantial curiosity as the majority of efforts in this arena have been aimed to upsurge solar fuel efficiencies for commercialization. The layered inorganic 2D nanosheets offer considerably higher tunability of their chemical surface, physicochemical properties and catalytic activity. Despites the intrinsic advantages of such metal-based materials viz., metal oxides, transition metal dichalcogenides, metal oxyhalides, metal organic frameworks, layered double hydroxide, MXene's, boron nitride, black phosphorous and perovskites, studies on such systems are limited for applications in photocatalytic CO2 reduction. The role of metal-based layers for CO2 conversion and new strategies such as surface modifications, defect generation and heterojunctions to optimize their functionalities are discussed in this review. Research prospects and technical challenges for future developments of layered 2D metal-based nanomaterials are critically discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据