4.7 Article

Polymerization-Induced Self-Assembly (PISA) for in situ drug encapsulation or drug conjugation in cancer application

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 618, 期 -, 页码 173-184

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2022.03.044

关键词

Block copolymers; Drug-loaded nanoparticles; Polymer-drug conjugates; polymerization-induced self-assembly (PISA)

向作者/读者索取更多资源

The study explores the possibility of using the same block copolymer carriers for in situ drug encapsulation or drug conjugation. The experiments demonstrate that the prepared nanocarriers undergo size and shape transformations, with high encapsulation efficiency of DOX and potential for future drug delivery and biomedical applications.
Hypothesis: We describe the possibility of using the same block copolymer carriers prepared by PISA for in situ drug encapsulation or drug conjugation.Experiments: Block copolymers containing poly((ethylene glycol) methacrylate)-co-poly (pentafluorophenyl methacrylate)-b-poly(hydroxypropyl methacrylate) (P((PEGMA-co-PFBMA)-b- PHPMA)) were synthesized at 10 wt% using PISA. The first approach involved in situ Doxorubicin (DOX) loading during PISA, while the second exhibited surface functionalization of PISA-made vesicles with dual drug therapies, N-acetyl cysteine (NAC) and DOX using para-fluoro-thiol reaction (PFTR) and carbodiimide chemistry, respectively. Cytotoxicity, cell uptake, and cell apoptosis were assessed on MDA-MB-231 cell lines.Findings: P((PEGMA-co-PFBMA)-b-PHPMA) nanocarriers were prepared, showing size and shape transformations from spheres, cylinders to raspberry-forming vesicles. DOX was readily loaded into NPs during PISA with relatively high encapsulation efficiency of 70 %, whereas the plain PISA-made vesicles could be functionalized with NAC and DOX at high yields. DOX-free NPs showed biocompatibility, whilst DOXconjugated NPs imparted a concentration-dependent cytotoxicity, as well as an enhanced cell uptake compared to free DOX. The results demonstrated that the same PISA-derived self-assemblies enabled either in situ drug encapsulation, or post-polymerization surface engineering with useful functionalities upon tuning the macro-CTA block, thus holding promises for future drug delivery and biomedical applications.(c) 2022 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据