4.5 Article

How to eliminate the toxic impact of extreme salinity on the ecology of activated sludge? Experimental verification with pickle plant effluents

期刊

出版社

WILEY
DOI: 10.1002/jctb.7195

关键词

microbial ecology; activated sludge; pickle plant effluent; salinity; brine discharge; filamentous growth

向作者/读者索取更多资源

The study showed that extreme salinity transients are the key factor triggering total destruction of activated sludge. The new waste management strategy proved that a stable microbial community could be maintained even when continuously exposed to a salinity level of around 10,000 mu S cm(-1) in the reactor, as long as variations remained limited to +/- 500 mu S cm(-1), ensuring satisfactory effluent quality.
BACKGROUND The study defined a sustainable management scheme to eliminate the toxic impact of extreme salinity on the ecology and performance of an activated sludge process. The scheme was implemented on a plant treating pickle plant effluents involving significant flow and salinity transients. It was conducted in two phases. Firstly, the plant was operated without attenuating extreme salinity transients, enabling observation of all adverse impacts on the microbial ecology. The second phase was implemented with a new management scheme tempering all salinity gradients revealing the recovery of the microbial ecology into a stable and sustainable state. RESULTS Initially, the microbial community could not cope with rapid salinity increase and exhibited significant changes resulting in the predominance of filamentous microorganisms, disruption of the floc structure and almost total loss of eukaryotic microorganisms. Settling problems and deterioration of effluent quality were observed, followed by plasmolysis and repeated total loss of the biomass. The new waste management strategy allowed only transients limited to +/- 500 mu S cm(-1) in the influent; in this way, the microbial ecology steadily improved. The effluent chemical oxygen demand could be maintained below 80-90 mg L-1 with no appreciable particulate matter escape. CONCLUSIONS Results identified sharp salinity transients as the key factor triggering total destruction of activated sludge. The novel scheme provided conclusive evidence that a stable microbial community could be maintained even when continuously exposed to a salinity level of around 10 000 mu S cm(-1) in the reactor, provided that variations remained limited to +/- 500 mu S cm(-1), ensuring satisfactory effluent quality. (c) 2022 Society of Chemical Industry (SCI).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据