4.7 Article

Sequential and concerted C-C and C-O bond dissociation in the Coulomb explosion of 2-propanol

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 157, 期 7, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0098531

关键词

-

资金

  1. ISF [674/21, 800/19]
  2. Lady Davis Fellowship

向作者/读者索取更多资源

In this study, the competing mechanisms involved in the Coulomb explosion of 2-propanol (CH3)(2)CHOH2+ dication formed by an ultrafast extreme ultraviolet pulse were investigated. Over 20 product channels were identified and characterized using 3D coincidence imaging of the ionic fragments. The results indicate a dominant sequential mechanism involving the cleavage of a C-C bond and secondary fragmentation of the hydroxyethyl cation, while C-O bond dissociation channels were less frequent. Exotic structural rearrangements were also observed. The relative yield of H3+ product was found to be suppressed compared to methanol and alkene dications.
We study the competing mechanisms involved in the Coulomb explosion of 2-propanol (CH3)(2)CHOH2+ dication, formed by an ultrafast extreme ultraviolet pulse. Over 20 product channels are identified and characterized using 3D coincidence imaging of the ionic fragments. The momentum correlations in the three-body fragmentation channels provide evidence for a dominant sequential mechanism, starting with the cleavage of a C-C bond, ejecting CH3+ and CH3CHOH+ cations, followed by a secondary fragmentation of the hydroxyethyl cation that can be delayed for up to a microsecond after ionization. The C-O bond dissociation channels are less frequent, involving proton transfer and double proton transfer, forming H2O+ and H3O+ products, respectively, and exhibiting mixed sequential and concerted character. These results can be explained by the high potential barrier for the C-O bond dissociation seen in our ab initio quantum chemical calculations. We also observe coincident COH+ + C2Hn+ ions, suggesting exotic structural rearrangements, starting from the Frank-Condon geometry of the neutral 2-propanol system. Remarkably, the relative yield of the H3+ product is suppressed compared with methanol and alkene dications. Ab initio potentials and ground state molecular dynamics simulations show that a rapid and direct C-C bond cleavage dominates the Coulomb explosion process, leaving no time for H-2 roaming, which is a necessary precursor to the H-3(+) formation. Published under an exclusive license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据