4.6 Article

Identification of the amino acid residues involved in the species-dependent differences in the pyridoxine transport function of SLC19A3

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 298, 期 8, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jbc.2022.102161

关键词

-

资金

  1. Japan Society for the Promotion of Science, Japan KAKENHI grant [JP21K15318]

向作者/读者索取更多资源

Recent studies have revealed the role of specific amino acid residues in the unique pyridoxine transport function of human solute carrier SLC19A3. These residues are critical for pyridoxine transport and are mostly conserved in SLC19A3 orthologs that can transport pyridoxine. The findings provide insights into the molecular basis of SLC19A3's unique functional characteristics.
Recent studies have shown that human solute carrier SLC19A3 (hSLC19A3) can transport pyridoxine (vitamin B6) in addition to thiamine (vitamin B1), its originally identified substrate, whereas rat and mouse orthologs of hSLC19A3 can transport thiamine but not pyridoxine. This finding implies that some amino acid residues required for pyridoxine transport, but not for thiamine transport, are specific to hSLC19A3. Here, we sought to identify these residues to help clarify the unique operational mechanism of SLC19A3 through analyses comparing hSLC19A3 and mouse Slc19a3 (mSlc19a3). For our analyses, hSLC19A3 mutants were prepared by replacing selected amino acid residues with their counterparts in mSlc19a3, and mSlc19a3 mutants were prepared by substituting selected residues with their hSLC19A3 counterparts. We assessed pyridoxine and thiamine transport by these mutants in transiently transfected human embryonic kidney 293 cells. Our analyses indicated that the hSLC19A3-specific amino acid residues of Gln86, Gly87, Ile91, Thr93, Trp94, Ser168, and Asn173 are critical for pyridoxine transport. These seven amino acid residues were found to be mostly conserved in the SLC19A3 orthologs that can transport pyridoxine but not in orthologs that are unable to transport pyridoxine. In addition, these residues were also found to be conserved in several SLC19A2 orthologs, including rat, mouse, and human orthologs, which were all found to effectively transport both pyridoxine and thiamine, exhibiting no species-dependent differences. Together, these findings provide a molecular basis for the unique functional characteristics of SLC19A3 and also of SLC19A2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据