4.7 Article

Regulation of cellular communication network factor 1 by Ras homolog family member A in bovine steroidogenic luteal cells

期刊

JOURNAL OF ANIMAL SCIENCE
卷 100, 期 7, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/jas/skac124

关键词

angiogenesis; corpus luteum; cellular communication network factor 1; Ras homolog family member A; luteinizing hormone

资金

  1. New Hampshire Agricultural Experiment Station
  2. USDA National Institute of Food and Agriculture [1013435, 1021326]

向作者/读者索取更多资源

In this study, it was found that RhoA and thrombin induce the expression of CCN1 in steroidogenic luteal cells of the cow corpus hemorrhagicum through a specific signaling pathway. This provides important insights into the mechanism of luteal development and angiogenesis.
The angiogenic inducer, CCN1, is not regulated by luteinizing hormone. Instead, RhoA increased CCN1 expression in steroidogenic luteal cells of the cow corpus hemorrhagicum, likely via a thrombin-mediated signaling pathway that includes stimulation of RhoA. Lay Summary The corpus luteum (CL) is a transient ovarian endocrine gland that secretes progesterone, the hormone of pregnancy. Development of an optimally functioning CL requires the creation of a dense capillary bed through growth of new blood vessels, which is an intricate process called angiogenesis. A myriad of factors regulates angiogenesis, including the angiogenic inducer protein, cellular communication network factor 1 (CCN1). Although it is highly expressed in the early-cycle bovine CL, the mechanisms of CCN1 regulation have not been fully elucidated. In the present study, we showed that CCN1 expression in steroidogenic luteal cells from the early-cycle bovine CL was induced by Ras homolog family member A (RhoA) and by thrombin, but not by luteinizing hormone (LH). To the best of our knowledge, the involvement of thrombin and its signaling partner, RhoA, in regulating CCN1 in bovine steroidogenic luteal cells has not been previously reported. These findings will inform our future work to determine how RhoA activation by thrombin leads to increased expression of CCN1. Development of the corpus luteum (CL) requires the growth of a new capillary network from preexisting vasculature, a process known as angiogenesis. Successful building of this capillary network occurs through a sequence of cellular events-differentiation, proliferation, migration, and adhesion-which are regulated by a suite of angiogenic proteins that includes cellular communication network factor 1 (CCN1). We previously reported that the expression of CCN1 was highest in luteal tissue obtained from the early-cycle, 4-d-old bovine CL (i.e., corpus hemorrhagicum) compared to the mid- and late-cycle CL. In the present study, we treated steroidogenic bovine luteal cells from early-cycle CL with luteinizing hormone (LH), but it had no effect on CCN1 expression. Direct stimulation of the canonical LH pathway with forskolin and dibutyryl-cyclic adenosine monophosphate (cAMP), however, inhibited CCN1 mRNA expression. In endothelial cells, stimulation of Ras homolog family member A (RhoA) induces CCN1 expression, whereas RhoA inactivation inhibits it. Yet, it is unknown if regulation of CCN1 in steroidogenic luteal cells works likewise. We hypothesized that a similar mechanism of CCN1 regulation exists in bovine luteal cells and that thrombin, a known RhoA activator, may be a physiologic trigger for this mechanism in the early-cycle CL. To test this hypothesis, ovaries were collected from lactating dairy cows on days 3 or 4 of the estrous cycle, and corpora lutea were dissected and dissociated. Steroidogenic luteal cells were suspended in defined Ham's F12 medium, supplemented with insulin/transferrin/selenium and gentamicin, and seeded into 6-well plates. After 24 h, spent medium was replaced with fresh Ham's F12, and the cells were cultured for 24 to 48 h. Cells were treated for 2 h with defined medium, 10% fetal bovine serum (FBS), thrombin (1, 5, 10 U/mL), or Rho Activator II (0.25, 1, 2 mu g/mL). Cells were then lysed for RNA extraction, followed by cDNA generation, and quantitative polymerase chain reaction (qPCR). Thrombin (1, 5, 10 U/mL; n = 3) and Rho Activator II (0.25, 1, 2 mu g/mL; n = 6) increased (P < 0.05) CCN1 mRNA expression. In summary, CCN1 in bovine steroidogenic luteal cells was induced by thrombin and appeared to be regulated in a Rho-dependent manner. Future work will elucidate the signaling partners downstream of Rho which leads to CCN1 gene expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据