4.7 Review

Cathode materials of metal-ion batteries for low-temperature applications

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 912, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2022.165142

关键词

Lithium-ion battery; Multivalent metal-ion battery; High-energy cathode material; Ultralow temperature; Electrochemical performance

资金

  1. National Natural Science Foundation of China [52172250, 51772296]

向作者/读者索取更多资源

Energy storage devices have made significant advancements in recent years, but their performance is limited in low-temperature environments. Developing new cathode materials is a key strategy to alleviate these limitations, with lithium-ion batteries being the most attractive option. Sodium-ion batteries, magnesium-ion batteries, and zinc-ion batteries are potential substitutes, but they face their own challenges at low temperatures. This review provides an overview of these batteries and their high-energy cathode materials that can operate in low-temperature environments.
Energy storage devices have been developed greatly in recent years. Developing forward, they are expected to operate stably in electric vehicles, electric grids, military equipment, and aerospaces in various climates. Unfortunately, these areas require batteries to be repeatedly and periodically exposed to sub-zero temperatures, even extremely low temperatures (-40 degrees C or lower). The low temperature reduces the kinetics of all the activation processes of the batteries, leading to increased impedance and polarization, and loss of battery energy and power, thus restricting their performance. Developing new cathode materials is one of the main strategies to alleviate the low-temperature restrictions. A conventional lithium-ion battery is the most attractive system, which is more adaptive to the practical low-temperature application now. Sodium ion batteries, magnesium-ion batteries, and zinc-ion batteries, which have the advantages of low cost and high safety, are considered potential substitutes for lithium-ion batteries, the electrochemical performance of these batteries at low-temperature has been conducted extensively. This review provides an overview of lithium-ion batteries, sodium-ion batteries, magnesium-ion batteries, and zinc-ion batteries that can work normally in low-temperature environments, with emphasis on various high-energy cathode materials, mainly including polyanionic compounds, layered oxides, spinel oxides, Prussian blue, and Prussian blue analogs. Specifically, we propose how the conventional low-temperature charge-transfer resistance can be overcome. However, these chemistries also present their own unique challenges at low temperatures. This article discusses the advantages and disadvantages of these materials, as well as the main challenges and strategies for applying them to batteries at low temperatures so that the batteries can still discharge efficiently.(c) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据