4.7 Article

Machine learning approach to predict the heat transfer coefficients pertaining to a radiant cooling system coupled with mixed and forced convection

期刊

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2022.107624

关键词

Machine learning; Levenberg-marquardt; Mixed convection; Forced convection

资金

  1. Yildiz Technical Uni-versity Scientific Research Projects Coordination Department [FBA-2019-3743]

向作者/读者索取更多资源

This study predicts heat transfer coefficients in a radiant wall cooling system using a machine learning approach. Experimental data is used to train neural network models, and the accuracy and performance of the predictions are evaluated.
Mixed convection phenomenon over radiant cooled surfaces with displacement ventilation in living environments is becoming a popular issue due to the airborne viruses and energy economy. Artificial neural networks are one of the machine learning methods that are widely evaluated as an engineering tool. In the current study, heat transfer coefficients for a radiant wall cooling system coupled with mixed and forced convection have been predicted by a machine learning approach. This approach should be noted as a first experimental investigation couple with an artificial neural network analysis in the open sources in which mixed convection systems in real sized living environments is examined. Experimentally obtained heat transfer coefficients have been used in the development of the feed forward back propagation multi-layer perceptron network structure. So as to analyze the impact of the input factors on the prediction performance, two neural network structures with dissimilar input parameters such as various temperatures, velocities, and heat transfer rates have been developed. By means of feed forward back propagation multi-layer perceptron neural network algorithms, convection, radiation, and total heat transfer coefficients have been predicted using the experimentally acquired dataset including 35 data points belonging to the mixed and forced convection conditions. Training, validation, and test data groups include 70%, 15%, and 15% of the dataset, in turn. Training algorithm has been computed via LevenbergMarquardt one with 10 neurons in the hidden layer. The findings obtained from the computational solution have been evaluated as a result of the contrast with the target data with in the +/- 5% deviation band for all heat transfer coefficients. The performance factors have been computed and the estimation precision of the numerical models has been thoroughly examined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据