4.3 Article

Preparation, characterization, and biocompatibility of chondroitin sulfate-based sol-gel coatings and investigation of their effects on osseointegration improvement

出版社

TAYLOR & FRANCIS AS
DOI: 10.1080/00914037.2022.2105332

关键词

Antibacterial property; chondroitin sulfate; metallic implant; sol-gel chemistry

向作者/读者索取更多资源

“Implants with enhanced antibacterial and surface properties were prepared by replacing traditional titanium and titanium alloys in the field of biomedical materials. The chondroitin sulfate sol-gel coatings showed thermal stability and biocompatibility, making them a promising alternative for dental and orthopedic applications.”
In this work, implants with enhanced antibacterial and surface properties besides mechanical, biological, and chemical properties were prepared with the replacement of traditional titanium and titanium alloys in the field of biomedical materials. Titanium substrates were coated with chondroitin sulfate (CS) containing (3-glycidoxypropyl)trimethoxysilane (GLYMO) and tetraethoxysilane (TEOS) based thin film using sol-gel technology. Chondroitin sulfate is a preferred material due to its characteristics antioxidative and osseointegresion properties besides its collagen-forming properties. Coated implants were morphologically elucidated with atomic force microscopy (AFM), and scanning electron microscopy (SEM). The structure of the chondroitin sulfate-containing films was investigated with Fourier Transform Infrared Spectroscopy (FTIR) and Energy Dispersive X-Ray Analysis (EDX) techniques. The obtained CS-based sol-gel surface coatings are thermally stable up to similar to 200 degrees C according to TGA and DTA analysis results. The biological and antibacterial properties of the coatings were also determined. The biocompatibility and osseointegration properties of the coatings developed within the scope of the study were, determined by in vivo studies on rats. According to biocompatibility results of CS/Sol-Gel coated surfaces, Cell viability (%) rates of CS-based coatings showed between 89 and 66%. According to the experimental data, it has been claimed that implants improved with antibacterial, stable, homogeneous, and biocompatible coatings can be used as a new alternative product for dental and orthopedic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据