4.7 Article

Redox Active α-Lipoic Acid Differentially Improves Mitochondrial Dysfunction in a Cellular Model of Alzheimer and Its Control Cells

期刊

出版社

MDPI
DOI: 10.3390/ijms23169186

关键词

alpha lipoic acid; Alzheimer disease; mitochondria; ROS; mitochondria dysfunction; respiratory chain

向作者/读者索取更多资源

Alpha lipoic acid (ALA) has strong antioxidant properties and can significantly improve mitochondrial dysfunction in a cellular model of Alzheimer's disease (AD). ALA increases the activity of respiratory chain complexes, enhances mitochondrial membrane potential (MMP) and ATP levels, leading to improved mitochondrial function.
Introduction: Alpha lipoic acid (ALA) is a sulphur-containing organic compound, derived from octanoic acid, and an important cofactor for mitochondrial respiratory enzymes. It has strong antioxidant properties that improve mitochondrial function. We investigated if ALA improves mitochondrial dysfunction in a cellular model of Alzheimer's disease (AD). Methods: SH-SY5Y-APP(695) cells were used as a model for an early stage of AD. Vector-transfected SH-SY5Y-MOCK cells served as controls. Using these cells, we investigated mitochondrial respiration (OXPHOS), mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) production, and citrate synthase activity (CS) in cells treated with ALA. Cells were treated for 24 h with different concentrations of ALA and with or without the complex I inhibitor rotenone. Results: Incubation with ALA showed a significant increase in ATP levels in both SH-SY5Y-APP(695) and SH-SY5Y-MOCK cells. MMP levels were elevated in SH-SY5Y-MOCK cells, treatment with rotenone showed a reduction in MMP, which could be partly alleviated after incubation with ALA in SH-SY5Y-MOCK cells. ALA treatment showed significant differences in respiration chain complex activities in SH-SY5Y-MOCK cells. Citrate synthase activity was unaffected. ROS levels were significantly lower in both cell lines treated with ALA. Conclusions: ALA increased the activity of the different complexes of the respiratory chain, and consequently enhanced the MMP, leading to increased ATP levels indicating improved mitochondrial function. ALA only marginally protects from additional rotenone-induced mitochondrial stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据