4.7 Article

Shape Transformations and Self-Assembly of Hairy Particles under Confinement

期刊

出版社

MDPI
DOI: 10.3390/ijms23147919

关键词

hairy nanoparticles; slit-like pores; self-assembly; molecular dynamics

向作者/读者索取更多资源

This study utilizes molecular dynamics simulations to investigate the behavior of polymer-tethered nanoparticles between two walls. The results show that the shape and self-organization of these particles can be controlled by changing the interaction with the walls and the wall separation.
Molecular dynamics simulations are used to investigate the behavior of polymer-tethered nanoparticles between two inert or attractive walls. The confinement in pores creates new possibilities for controlling the shape transformation of individual hairy particles and their self-organization. We introduce a minimalistic model of the system; only chain-wall interactions are assumed to be attractive, while the others are softly repulsive. We show how the shape of isolated particles can be controlled by changing the wall separation and the strength of the interaction with the surfaces. For attractive walls, we found two types of structures, bridges and mounds. The first structures are similar to flanged spools in which the chains are connected with both walls and form bridges between them. We observed various bridges, symmetrical and asymmetrical spools, hourglasses, and pillars. The bridge-like structures can be nano-oscillators in which the cores jump from one wall to the other. We also study the self-assembly of a dense fluid of hairy particles in slit-like pores and analyze how the system morphology depends on interactions with the surfaces and the wall separation. The hairy particles form layers parallel to the walls. Different ordered structures, resembling two-dimensional crystalline lattices, are reported. We demonstrate that hairy particles are a versatile soft component forming a variety of structures in the slits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据