4.7 Article

Ethyl Vinyl Ketone Activates K+ Efflux to Regulate Stomatal Closure by MRP4-Dependent eATP Accumulation Working Upstream of H2O2 Burst in Arabidopsis

期刊

出版社

MDPI
DOI: 10.3390/ijms23169002

关键词

ethyl vinyl ketone; eATP; H2O2; K+ efflux; DORN1-RBOHF; stomatal closure

资金

  1. National Natural Science Foundation of China [31270655]

向作者/读者索取更多资源

Plants use EVK to regulate stomatal closure, thereby limiting water loss and improving pathogen resistance. EVK induces stomatal closure by increasing guard cell K+ efflux. This study also found that eATP and H2O2 play important roles in EVK-regulated K+ efflux.
Plants regulate stomatal mobility to limit water loss and improve pathogen resistance. Ethyl vinyl ketone (evk) is referred to as a reactive electrophilic substance (RES). In this paper, we found that evk can mediate stomatal closure and that evk-induced stomatal closure by increasing guard cell K+ efflux. To investigate the role of eATP, and H2O2 in evk-regulated K+ efflux, we used Arabidopsis wild-type (WT), mutant lines of mrp4, mrp5, dorn1.3 and rbohd/f. Non-invasive micro-test technology (NMT) data showed that evk-induced K+ efflux was diminished in mrp4, rbohd/f, and dorn1.3 mutant, which means eATP and H2O2 work upstream of evk-induced K+ efflux. According to the eATP content assay, evk stimulated eATP production mainly by MRP4. In mrp4 and mrp5 mutant groups and the ABC transporter inhibitor glibenclamide (Gli)-pretreated group, evk-regulated stomatal closure and eATP buildup were diminished, especially in the mrp4 group. According to qRT-PCR and eATP concentration results, evk regulates both relative gene expressions of MRP4/5 and eATP concentration in rbohd/f and WT group. According to the confocal data, evk-induced H2O2 production was lower in mrp4, mrp5 mutants, which implied that eATP works upstream of H2O2. Moreover, NADPH-dependent H2O2 burst is regulated by DORN1. A yeast two-hybrid assay, firefly luciferase complementation imaging assay, bimolecular fluorescence complementation assay, and pulldown assay showed that the interaction between DORN1 and RBOHF can be realized, which means DORN1 may control H2O2 burst by regulating RBOHF through interaction. This study reveals that evk-induced stomatal closure requires MRP4-dependent eATP accumulation and subsequent H2O2 accumulation to regulate K+ efflux.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据