4.7 Article

Graphitic carbon nitride/few-layer graphene heterostructures for enhanced visible-LED photocatalytic hydrogen generation

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 47, 期 61, 页码 25555-25570

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2022.05.285

关键词

Graphitic carbon nitride; Few-layer graphene; Interfacial engineering; Hydrogen generation; Charge carrier separation; Photocatalysis

资金

  1. FCT/MCTES (PIDDAC) [LA/P/0045/2020, UIDB/50020/2020, UIDP/50020/2020, UIDB/00511/2020]
  2. FCT/MCTES -PIDDAC, Portugal [POCI-01-0145-FEDER-029600]
  3. University of Aveiro [UIDB/50006/2020]
  4. FCT/MCT [UIDB/50006/2020]
  5. European Social Fund (FSE) [NORTE-06-3559-FSE-000069]
  6. national funds (OE) through FCT [048-88ARH/2018]

向作者/读者索取更多资源

In this study, few-layer graphene prepared by catalytic chemical vapour deposition and bulk graphitic carbon nitride were assembled into novel heterostructures, showing enhanced photocatalytic activity for H-2 generation. The best performing composite exhibited 4 times higher H-2 generation rate than pure GCN with high stability after four successive cycles.
Few-layer graphene (FLG, 2-7 nm thickness) prepared by catalytic chemical vapour deposition (c-CVD), and bulk graphitic carbon nitride (g-C3N4; GCN) were assembled to develop novel 2D/2D xFLG(y)/GCN heterostructures. The impact of FLG loading and morphology on the activity of GCN has been evaluated towards H-2 generation from water splitting under visible-LED irradiation. The heterostructures, characterised by UV-vis DRS, photoluminescence, EPR, Raman, AFM, XRD, XPS, SEM/TEM/STEM and photocurrent, present strong interfacial interaction and show higher photocatalytic activity than pure GCN. The best performing material, 2FLG(10)/GCN, generated 1274 g(-1) h(-1) of H-2, i.e., 4-times higher than pure GCN. The improved photoactivity was ascribed to a synergistic effect between GCN and FLG, owing to: i) efficient charge separation of photoinduced electron-hole pairs through electron transfer from GCN to FLG, ii) increased surface area, and iii) enhanced visible light absorption. Moreover, the best performing composite presents high stability after four successive cycles with no significant change in its activity. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据