4.6 Article

Experimental study of compaction localization in carbonate rock and constitutive modeling of mechanical anisotropy

出版社

WILEY
DOI: 10.1002/nag.3418

关键词

compaction band; constitutive modeling; rock anisotropy; X-ray tomography

资金

  1. Universite Grenoble-Alpes
  2. Basic Energy Sciences [DE-SC0017615]
  3. Investissements d'Avenir Grant [ANR-11-LABX-0030]

向作者/读者索取更多资源

This paper investigates the anisotropic behavior of a high-porosity carbonate rock and analyzes the influence of coring direction on yielding and compaction behavior. The results show that the coring direction has a significant impact on the mechanical response, but the strain localization mode is primarily affected by the confinement level. By introducing an elastoplastic constitutive law, the interaction between material anisotropy and compaction behavior is successfully captured.
Sedimentary rocks are inherently anisotropic and prone to strain localization. While the influence of rock anisotropy on the brittle/dilative regime has been studied extensively, its influence on the ductile/compactive regime is much less explored. This paper discusses the anisotropic behavior of a high-porosity carbonate rock from central Europe (the Maastricht Tuffeau). A set of triaxial tests with concurrent x-ray tomography has been performed at different confining pressures. The anisotropic characteristics of this rock have been investigated by testing samples cored at different inclinations of the bedding, thus revealing non-negligible effects of the coring direction on yielding and compaction behavior. Specifically, samples cored perpendicular to bedding display higher strength and longer stages of post-yielding deformation before manifesting re-hardening. Despite such alterations of the inelastic response, Digital Image Correlation has revealed that the strain localization mode is independent of the coring direction, thus being primarily affected by the confinement level. To capture the observed interaction between material anisotropy and compaction behavior at the continuum-scale, an elastoplastic constitutive law has been proposed. For this purpose, a set of tensorial bases has been introduced to replicate how the oriented rock fabric modulates the yielding and plastic flow characteristics of the material. The analyses show that the impact of the coring direction on yield function and plastic flow rule is fundamentally different, thus requiring the use of distinct projection strategies (a strategy here defined heterotopic mapping). The performance of the model, studied through parametric analyses and by calibrating the experimental results, illustrates the improved capability of the proposed constitutive approach when applied to strongly anisotropic porous rocks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据