4.7 Article

Phyto-mediated synthesis of nickel oxide (NiO) nanoparticles using leaves' extract of Syzygium cumini for antioxidant and dyes removal studies from wastewater

期刊

INORGANIC CHEMISTRY COMMUNICATIONS
卷 142, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.inoche.2022.109656

关键词

Syzygium cumini; NiO NPs; Antioxidant activity; Adsorption of dyes

资金

  1. Deanship of Scientific Research at King Khalid University [RGP.2/124/43]

向作者/读者索取更多资源

This study reports the synthesis of nickel oxide nanoparticles using Syzygium cumini leaf extract as a green route. The extract reduced nickel ions and stabilized them, resulting in successful synthesis of the nanoparticles. Various characterization techniques confirmed the composition and structure of the nanoparticles, and they exhibited high antioxidant performance and dye adsorption capacity.
The present study reports the nickel oxide nanoparticles (NiO NPs) synthesis by green route using Syzygium cumini leaf extract. Secondary metabolites in Syzygium cumini extract reduced nickel ions by decreasing, sta-bilizing, and capping them. The absorption peak of NPs in the UV-visible spectrum was 320 nm, indicating that they were successfully synthesized. Fourier transform infrared spectroscopic (FTIR) analysis identified several functional groups present in the extract which were accountable for reduction. Scanning electron microscope (SEM) images showed the formation of spherical shape NiO NPs. X-ray diffraction spectroscopy (XRD) showed that the crystallite size of NiO-NPs was 10.4 nm. EDX determined the composition of NPs that confirmed the presence of elemental nickel and oxygen. The reducing property of leaves' extract was due to the presence of antioxidants which were confirmed by measuring antioxidant potential. Antioxidant performance of synthesized NiO-NPs was assessed by DPPH radical scavenging activity, phosphomolydenum complex formation method, and total phenolic contents estimation. The percent scavenging of DPPH radical was found to be 74.83% at a 1000 mu g/ml concentration of NPs. Total antioxidant activity was 0.5369 and total phenolic content was 310.8 mg/g GAE in NiO-NPs (Gallic Acid Equivalent). The adsorption of methylene blue and Congo red dyes on NiO-NPs was investigated. Temperature, pH, dye concentration, contact time, and adsorbent dosage were all tuned to ensure that both colors were removed as completely as possible. For Congo red and methylene blue (MB) dyes, NiO-NPs demonstrated high removal efficiency (CR).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据