4.7 Article

Improved differential evolution algorithm based on the sawtooth-linear population size adaptive method

期刊

INFORMATION SCIENCES
卷 608, 期 -, 页码 1045-1071

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ins.2022.07.003

关键词

Differential evolution; Sawtooth-linear; Population size; Scaling factor; Crossover rate

资金

  1. Natural Science Foundation of Guangdong Province [2020A1515011468]
  2. Guangdong University Scientific Research Project [2019KTSCX189]
  3. Joint Research and Development Fund of Wuyi University and Hong Kong and Macau [2019WGALH21]

向作者/读者索取更多资源

This study proposes an improved differential evolution algorithm called SLDE, which utilizes a sawtooth-linear population size adaptive (SLPSA) method and an improved parameter control method. Experimental results demonstrate that SLDE outperforms six state-of-the-art differential evolution algorithms.
The main parameters that affect the performance of a differential evolution algorithm are the scaling factor, crossover rate, and population size. To adaptively adjust the population diversity and balance the exploration and exploitation abilities of a differential evolution algorithm during the evolution process, this study proposes a sawtooth-linear population size adaptive (SLPSA) method and an improved scaling factor and crossover rate control method. Subsequently, an improved differential evolution algorithm called SLDE is proposed. The SLPSA method constructs an external archive for storing the abandoned trial vectors and periodically adds vectors from external archive to the population during the iterative process, thereby periodically increasing the diversity of the population, which enhances the algorithm's ability to jump out of locally optimal values. Based on a distance-based parameter adaptation method, the update formulas for the scaling factor weight and crossover rate weight are improved. By using 84 benchmark functions from CEC 2011, CEC 2014, CEC 2015, and CEC 2017, the SLDE performance was verified experimentally by analyzing and comparing the proposed SLDE to six state-of-the-art differential evolution algorithms. The experimental results demonstrated that the SLDE performance was significantly better than that of the six state-of-the-art differential evolution algorithms. (C) 2022 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据