4.7 Article

Impact of Vertical Mixing Parameterizations on Internal Gravity Wave Spectra in Regional Ocean Models

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 49, 期 16, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2022GL099614

关键词

internal gravity waves; vertical wavenumber spectra; MITgcm; KPP mixing parameterization

资金

  1. NASA [80NSSC20K1135]
  2. NSF [OCE-1851164]
  3. ONR [N00014-19-1-2712]
  4. Natural Sciences and Engineering Research Council of Canada [A9627]
  5. NASA
  6. Physical Oceanography and Modeling, Analysis, and Prediction Programs
  7. NSF

向作者/读者索取更多资源

We propose improvements to the modeling of the vertical wavenumber spectrum of internal gravity waves in regional ocean simulations. Our study focuses on the sensitivity of the model to mixing parameters and compares the results to observations. The findings suggest that improving the mixing parameters can enhance the representation of internal wave dynamics.
We present improvements in the modeling of the vertical wavenumber spectrum of the internal gravity wave continuum in high-resolution regional ocean simulations. We focus on model sensitivities to mixing parameters and comparisons to McLane moored profiler observations in a Pacific region near the Hawaiian Ridge, which features strong semidiurnal tidal beams. In these simulations, the modeled continuum exhibits high sensitivity to the background mixing components of the K-Profile Parameterization (KPP) vertical mixing scheme. Without the KPP background mixing, stronger vertical gradients in velocity are sustained in the simulations and the modeled kinetic energy and shear spectral slopes are significantly closer to the observations. The improved representation of internal wave dynamics in these simulations makes them suitable for improving ocean mixing estimates and for the interpretation of satellite missions such as the Surface Water and Ocean Topography mission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据