4.6 Article

Vitamin D Receptor affects male mouse fertility via regulation of lipid metabolism and testosterone biosynthesis in testis

期刊

GENE
卷 834, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.gene.2022.146589

关键词

Vitamin D receptor; Lipid metabolism; Gonadal adipose; Testosterone biosynthesis; Male fertility

资金

  1. Research Project of Shaanxi Science and Technology Department [2020NY-003, 2020NY-001, 2019NY-097]

向作者/读者索取更多资源

This study reveals that VDR regulates testosterone biosynthesis by modulating lipid metabolism in mouse testis, and its dysfunction leads to impaired male fertility.
Vitamin D and vitamin D receptor (VD/VDR) plays a vital role in the development of spermatozoa, which is largely determined by the testosterone level in serum. Testosterone biosynthesis is closely related to lipid metabolism in gonadal adipose around testes. VDR could regulate lipid metabolism in adipocytes as well. However, it still remains unknown how VDR regulates lipid metabolism to impact testosterone biosynthesis in testis. Hereby, various parameters of male fertility were compared between wildtype (WT) and Vdr knockout (Vdr-KO) male mouse. For Vdr-KO mice, the size of testis and gonadal adipose was smaller than that of WT, and the sperm quality and testosterone level were lower than WT. Subsequently, testis proteome data between VdrKO and WT mice indicated that dysregulation of lipid metabolism was closely associated with decreased testosterone biosynthesis in Vdr-deficient mouse. And further evaluation of VDR functions in Leydig cells verified that VDR impacted lipid metabolism and regulated the expression of a range of genes involved in testosterone biosynthesis. Knockdown VDR could significantly decrease testosterone synthesis and secretion in Leydig cells. Meanwhile, expression of genes involved in androgen synthesis was decreased but genes related to lipolysis were up-regulated. Collectively, the present study unveiled the relationship between lipid metabolism and testosterone biosynthesis mediated by VDR in mouse testis and its effect on male fertility. These findings will greatly enhance our current understanding of VDR intermediate in lipid metabolism and androgen synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据