4.7 Article

Conversion of carbon dioxide to carbon monoxide: Two-step chemical looping dry reforming using Ca2Fe2O5-Zr0.5Ce0.5O2 composite oxygen carriers

期刊

FUEL
卷 322, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2022.124182

关键词

Chemical looping dry reforming (CLDR); Oxygen carrier; CO2 splitting; Ca2Fe2O5; Zr0.5Ce0.5O2

资金

  1. National Natural Science Foundation of China [52076209, 51776210]
  2. Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) [GML2019ZD0108]
  3. Guangdong Basic and Applied Basic Research Foundation [2019B1515120022]
  4. Youth Innovation Promotion Association, CAS [2018384]

向作者/读者索取更多资源

In this study, Zr0.5Ce0.5O2 was used to enhance the reactivity of Ca2Fe2O5 oxygen carriers and alleviate sintering issues. The addition of Zr0.5Ce0.5O2 led to improved carbon monoxide yield and cyclic performance of the modified oxygen carriers.
In this study, Zr0.5Ce0.5O2 (ZC) was used to improve the reactivity of Ca2Fe2O5 (CF) oxygen carriers (OCs) and alleviate sintering. The reactivity of modified OCs in Chemical looping dry reforming (CLDR) was explored using a thermogravimetric analyzer and a fixed-bed reactor, and the fresh and reacted OCs were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results revealed that CF6 (60 wt% CF + 40 wt% ZC) had the best reactivity. Owing to the addition of ZC, the carbon monoxide (CO) yield of CF6 was twice that of CF during carbon dioxide (CO2) oxidation, increasing from 72.3 mL/g to 138 mL/g. In the cyclic experiments, the CO yield from CO2 oxidation decreased from 138 mL/g in the first cycle to 34.3 mL/g in the fifth cycle and subsequently stabilized over the next 15 cycles. The decrease in cyclic performance is related to the sintering of the sample and the formation of a new phase, CaZrO3, which hindered the redox reaction in the sample. Although CF6 had a decreased cyclic performance, it still had a better reactivity than CF, which had a CO yield that was about 20% lower than that of CF6. The reason for the improvement is that ZC improved the dispersibility of CF. After 20 cycles, the generation of CO was facilitated by extending the reduction time of the OC, and the CO yield increased from 35 mL/g to 60 mL/g when the reduction time was doubled.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据