4.7 Article

Numerical analysis of soot emissions from gasoline-ethanol and gasoline-butanol blends under gasoline compression ignition conditions

期刊

FUEL
卷 319, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2022.123740

关键词

Gasoline-biofuel blends; Soot emissions; Gasoline compression ignition; Mixture stratification; Numerical simulation; Computational fluid dynamics; Mechanism reduction; Gasoline surrogates; Machine learning

向作者/读者索取更多资源

In this study, computational fluid dynamics (CFD) simulations were used to investigate the impact of blending two biofuels, ethanol and n-butanol, with gasoline on combustion phasing and soot emissions in a low load engine. The results showed that both fuel chemistry and physical properties had an influence on combustion and soot emissions, with a greater effect observed at earlier injection timings.
In the present work, computational fluid dynamics (CFD) simulations of a single-cylinder gasoline compression ignition (GCI) engine were performed to investigate the impact of blending two biofuels, ethanol and n-butanol, with gasoline on the trade-off between combustion phasing and soot emissions under low load conditions. In order to represent market gasoline (RD5-87), a four-component toluene primary reference fuel (TPRF) + ethanol (ETPRF) surrogate (with 20% ethanol by mole; E20) was formulated using a neural network based octane predictor such that the surrogate had the same ethanol content, Research Octane Number (RON) and Octane Sensitivity (S). In addition, a novel skeletal kinetic mechanism for ETPRF and TPRF + n-butanol (BTPRF) blends, incorporating polycyclic aromatic hydrocarbon (PAH) chemistry, was developed. A three-dimensional (3D) engine CFD formulation employing the skeletal mechanism, adaptive mesh refinement (AMR), finite-rate chemistry approach, and hybrid method of moments (HMOM) was adopted to capture the in-cylinder combustion phenomena and soot emissions. The engine CFD model was validated against RD5-87 experimental data for a broad range of start-of-injection (SOI) timings (-21/-27/-36/-45 crank angle degrees (CAD) after top-dead center (aTDC)), with respect to in-cylinder pressure, heat release rate, combustion phasing, and soot emissions. The closed-cycle simulation results were analyzed to elucidate the non-monotonic trend of soot emissions versus SOI timing: SOI-36 > SOI-45 > SOI-21 > SOI-27. Thereafter, the validated CFD model was employed to simulate the combustion of a gasoline-ethanol blend with 45% (by mole) ethanol (E45) and a gasoline-butanol blend with 45% (by mole) n-butanol (B45) under the same operating conditions to study the effects of fuel composition and SOI timing on combustion phasing and soot emissions. The sooting propensity followed the trend: B45 > E20 > E45 at all SOI timings. Overall, it was observed that the autoignition propensity was primarily related to fuel chemistry. On the other hand, sooting propensity showed strong coupling with both fuel chemistry and physical properties, with greater impact of fuel physical properties at advanced SOI timings. Superscript/Subscript Available

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据