4.3 Article

Absence of gliosis in a teleost model of spinal cord regeneration

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00359-016-1089-9

关键词

Gliosis; Spinal cord injury; Regeneration; Teleost fish; Apteronotus leptorhynchus

资金

  1. Northeastern University
  2. National Science Foundation [1538505]
  3. Div Of Civil, Mechanical, & Manufact Inn
  4. Directorate For Engineering [1538505] Funding Source: National Science Foundation

向作者/读者索取更多资源

Among the cellular processes that follow injury to the central nervous system, glial scar formation is thought to be one of the major factors that prevent regeneration. In regeneration-competent organisms, glial scar formation has been a matter of controversy. We addressed this issue by examining the glial population after spinal cord injury in a model of regeneration competency, the knifefish Apteronotus leptorhynchus. Analysis of spinal cord sections immunostained against the glial markers glial fibrillary acidic protein, vimentin, or chondroitin sulfate proteoglycan failed to produce any evidence for the formation of a glial scar in the area of the lesion at post-injury survival times ranging from 5 to 185 days. This result was independent of the lesion paradigm applied-amputation of the caudal part of the spinal cord or hemisection lesioning-and similar after examination of transverse and longitudinal sections. We hypothesize that the well-developed network of radial glia in both the intact and the injured spinal cord provides a support system for regeneration of tissue lost to injury. This glial network is likely also involved in the generation of new cells, as indicated by the large subset of glial fibrillary acidic protein-labeled glia that express the stem cell marker Sox2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据