4.5 Article

Morphology of visual sector thalamic reticular neurons in the macaque monkey suggests retinotopically specialized, parallel stream-mixed input to the lateral geniculate nucleus

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 525, 期 5, 页码 1273-1290

出版社

WILEY
DOI: 10.1002/cne.24134

关键词

TRN; LGN; anatomy; independent cluster analysis; RRID: SCR_001775; RRID: SCR_001622

资金

  1. NIH/NEI [EY018683, EY013588, EY022577]
  2. Whitehall Foundation [2013-05-06]
  3. Neukom Institute Scholar Program

向作者/读者索取更多资源

The thalamic reticular nucleus (TRN) is a unique brain structure at the interface between the thalamus and the cortex. Because the TRN receives bottom-up sensory input and top-down cortical input, it could serve as an integration hub for sensory and cognitive signals. Functional evidence supports broad roles for the TRN in arousal, attention, and sensory selection. How specific circuits connecting the TRN with sensory thalamic structures implement these functions is not known. The structural organization and function of the TRN is particularly interesting in the context of highly organized sensory systems, such as the primate visual system, where neurons in the retina and dorsal lateral geniculate nucleus of the thalamus (dLGN) are morphologically and physiologically distinct and also specialized for processing particular features of the visual environment. To gain insight into the functional relationship between the visual sector of the TRN and the dLGN, we reconstructed a large number of TRN neurons that were retrogradely labeled following injections of rabies virus expressing enhanced green fluorescent protein (EGFP) into the dLGN. An independent cluster analysis, based on 10 morphological metrics measured for each reconstructed neuron, revealed three clusters of TRN neurons that differed in cell body shape and size, dendritic arborization patterns, and medial-lateral position within the TRN. TRN dendritic and axonal morphologies are inconsistent with visual stream-specific projections to the dLGN. Instead, TRN neuronal organization could facilitate transmission of global arousal and/or cognitive signals to the dLGN with retinotopic precision that preserves specialized processing of foveal versus peripheral visual information. J. Comp. Neurol. 525:1273-1290, 2017. (c) 2016 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据