4.1 Article

Analysis and experiment of an airflow energy harvester based on diamagnetic levitation

期刊

出版社

EDP SCIENCES S A
DOI: 10.1051/epjap/2022220055

关键词

-

向作者/读者索取更多资源

This paper proposes an energy harvesting structure using diamagnetic levitation mechanism. The floating magnet rotor is driven to rotate by airflow with the joint action of magnetic forces and diamagnetic forces. The study investigates the influence of structural parameters on the performance of the harvester and finds that the output voltage increases with the square of flowrate.
This paper proposes an energy harvesting structure that can effectively generate electrical power. Diamagnetic levitation mechanism is utilized, with a floating magnet rotor levitated between two pyrolytic graphite plates just using a lifting magnet and airflow. The magnet rotor could be stably suspended under joint action of magnetic forces and diamagnetic forces, being driven to rotate by airflow. Three magnet rotors, with 1.5 mm, 3 mm and 4.5 mm thickness respectively, were adopted in the study so as to investigate the influence of structural parameters of the magnet rotor on the performance of the harvester. Simulation and experiment were carried out for the three magnet rotors. Among the tree magnet rotors, the 1.5 mm-thick one has the best output performance, with the lowest dynamic stability. Therefore, the energy harvester is to find tradeoff between output characteristics and dynamics. In this work, it was discovered that the peak output voltage of the energy harvester increased with the square of flowrate. As the flowrate increased to 3000 sccm, the 1.5 mm-thick rotor was rotating at a speed of 19729 rpm under standard temperature and pressure, with 1.255 V output voltage and 49 mW power. The diamagnetic levitation structure is expected to be applied to sensing, energy harvesting and air bearing under actuation of airflow due to its advantages of low friction, high rotation speed and large levitation space.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据