4.2 Article

Dynamic Cell Imaging: application to the diatom Phaeodactylum tricornutum under environmental stresses

期刊

EUROPEAN JOURNAL OF PHYCOLOGY
卷 58, 期 2, 页码 145-155

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/09670262.2022.2081732

关键词

Chloroplast; endoplasmic reticulum; iron limitation; light scattering; lipid droplets; organelle movement; phosphate limitation

向作者/读者索取更多资源

The dynamic movement of cell organelles is an important yet poorly understood aspect of cellular organization and metabolism. In this study, a non-invasive non-destructive method (Dynamic Cell Imaging, DCI) based on light scattering and interferometry was introduced to monitor dynamic events in photosynthetic cells using diatom Phaeodactylum tricornutum as a model system. The method showed that the dynamic movements of cell organelles depend on chloroplast activity and can be applied to studying the effects of various environments on microalgae.
The dynamic movement of cell organelles is an important and poorly understood component of cellular organization and metabolism. In this work we present a non-invasive non-destructive method (Dynamic Cell Imaging, DCI) based on light scattering and interferometry to monitor dynamic events within photosynthetic cells using the diatom Phaeodactylum tricornutum as a model system. For this monitoring we acquire for a few seconds movies of the signals that are related to the motion of dynamic structures within the cell (denoted scatterers), followed by a statistical analysis of each pixel time series. Illuminating P. tricornutum with LEDs of different wavelengths associated with short pulsed or continuous-wave modes of illumination revealed that dynamic movements depend on chloroplast activity, in agreement with the reduction in the number of pixels with dynamic behaviour after addition of photosystem II inhibitors. We studied P. tricornutum under two environmentally relevant stresses, iron and phosphate deficiency. The major dynamic sites were located within lipid droplets and chloroplast envelope membranes. By comparing standard deviation and cumulative sum analyses of the time series, we showed that within the droplets two types of scatterer movement could be observed: random motion (Brownian type) but also anomalous movements corresponding to a drift which may relate to molecular fluxes within a cell. The method appears to be valuable for studying the effects of various environments on microalgae in the laboratory as well as in natural aquatic environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据