4.7 Article

Observed and modeled response of water yam (Dioscorea alata L.) to nitrogen supply: Consequences for nitrogen fertilizer management in the humid tropics

期刊

EUROPEAN JOURNAL OF AGRONOMY
卷 138, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.eja.2022.126536

关键词

Crop model; Nitrate leaching; Split N fertilization; Tropical soil; Tuber initiation

类别

资金

  1. AgroEcoSystem Division of INRAE (France)

向作者/读者索取更多资源

This study investigates the impact of nitrogen leaching on water yam and suggests that adjusting nitrogen fertilizer application strategy can mitigate the negative effects of leaching on yam growth.
Yam (Dioscorea spp.) is an important source of food for millions of people throughout the tropics. Yam yields are constrained by several factors such as low soil fertility and a poor response of the crop to nutrient supply. Here we present an experimental and modeling study performed to test the hypothesis that N leaching in the humid tropics is a key factor that explains the poor response of water yam (Dioscorea alata L.) to N fertilization. A field experiment was carried out to assess the impact of three levels of N supply (50, 125 and 200 kg N ha(-1)) on crop growth and soil N availability. The N fertilizer was split into two equal doses (i.e., 50%/50% split ratio), one applied just before emergence and the other a month after tuber initiation, which corresponds to the current management used by farmers. The CropSyst-Yam model was adapted to include a new soil-crop N component describing the effects of limiting N conditions on yam growth, and then to test different N fertilizer managements. The experimental results indicated that all variables linked to the soil-crop system were affected by the increase in N supply (soil N availability, crop biomass, leaf area and N uptake), and the model well described these impacts. Nitrogen leaching throughout the field experiment represented about one third of the total N supplied by each treatment. Observed and predicted data revealed that N leaching reduced yam growth under the N50 and N125 treatments by reducing soil N availability near the tuber initiation stage. This effect was not observed under the N200 treatment. Model results showed that N leaching and its negative impact near tuber initiation in N50 and N125 could be diminished by advancing the second N application by two or three weeks, and by using a split ratio of 70%/30%. Model results also indicated that this fertilizer strategy would even be suitable during very rainy growing seasons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据