4.5 Article

Detection of brain somatic variation in epilepsy-associated developmental lesions

期刊

EPILEPSIA
卷 63, 期 8, 页码 1981-1997

出版社

WILEY
DOI: 10.1111/epi.17323

关键词

brain development; epilepsy; focal cortical dysplasia; LEAT; somatic mosaicism

资金

  1. Nationwide Foundation Innovation Fund
  2. NHGRI [K01 HG011062]

向作者/读者索取更多资源

This study identified somatic and germline variants associated with epilepsy in children, shedding light on the genetic basis of structural brain abnormalities leading to focal epilepsy and suggesting new candidate disease genes.
Objective Epilepsy-associated developmental lesions, including malformations of cortical development and low-grade developmental tumors, represent a major cause of drug-resistant seizures requiring surgical intervention in children. Brain-restricted somatic mosaicism has been implicated in the genetic etiology of these lesions; however, many contributory genes remain unidentified. Methods We enrolled 50 children who were undergoing epilepsy surgery into a translational research study. Resected tissue was divided for clinical neuropathologic evaluation and genomic analysis. We performed exome and RNA sequencing to identify somatic variation and we confirmed our findings using high-depth targeted DNA sequencing. Results We uncovered candidate disease-causing somatic variation affecting 28 patients (56%), as well as candidate germline variants affecting 4 patients (8%). In agreement with previous studies, we identified somatic variation affecting solute carrier family 35 member A2 (SLC35A2) and mechanistic target of rapamycin kinase (MTOR) pathway genes in patients with focal cortical dysplasia. Somatic gains of chromosome 1q were detected in 30% (3 of 10) of patients with Type I focal cortical dysplasia (FCD)s. Somatic variation in mitogen-activated protein kinase (MAPK) pathway genes (i.e., fibroblast growth factor receptor 1 [FGFR1], FGFR2, B-raf proto-oncogene, serine/threonine kinase [BRAF], and KRAS proto-oncogene, GTPase [KRAS]) was associated with low-grade epilepsy-associated developmental tumors. RNA sequencing enabled the detection of somatic structural variation that would have otherwise been missed, and which accounted for more than one-half of epilepsy-associated tumor diagnoses. Sampling across multiple anatomic regions revealed that somatic variant allele fractions vary widely within epileptogenic tissue. Finally, we identified putative disease-causing variants in genes not yet associated with focal cortical dysplasia. Significance These results further elucidate the genetic basis of structural brain abnormalities leading to focal epilepsy in children and point to new candidate disease genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据