4.8 Article

Using Deep Learning to Fill Data Gaps in Environmental Footprint Accounting

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 56, 期 16, 页码 11897-11906

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.2c01640

关键词

input-output model; environmental footprint; machine learning; RAS; deep learning

向作者/读者索取更多资源

This study proposes a machine learning-augmented method that combines the RAS method and deep neural network model to improve the accuracy of IO table prediction. The results show significant performance improvements in both short-term and long-term predictions, and the method is applicable to carbon footprint accounting.
Environmental footprint accounting relies on economic input-output (IO) models. However, the compilation of IO models is costly and time-consuming, leading to the lack of timely detailed IO data. The RAS method is traditionally used to predict future IO tables but suffers from doubts for unreliable estimations. Here we develop a machine learning-augmented method to improve the accuracy of the prediction of IO tables using the US summary-level tables as a demonstration. The model is constructed by combining the RAS method with a deep neural network (DNN) model in which the RAS method provides a baseline prediction and the DNN model makes further improvements on the areas where RAS tended to have poor performance. Our results show that the DNN model can significantly improve the performance on those areas in IO tables for short-term prediction (one year) where RAS alone has poor performance, R-2 improved from 0.6412 to 0.8726, and median APE decreased from 37.49% to 11.35%. For long-term prediction (5 years), the improvements are even more significant where the R2 is improved from 0.5271 to 0.7893 and median average percentage error is decreased from 51.12% to 18.26%. Our case study on evaluating the US carbon footprint accounts based on the estimated IO table also demonstrates the applicability of the model. Our method can help generate timely IO tables to provide fundamental data for a variety of environmental footprint analyses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据