4.7 Article

Evaluating the applicability of the ratio of PM(2.5 )and carbon monoxide as source signatures

期刊

ENVIRONMENTAL POLLUTION
卷 306, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2022.119278

关键词

Air pollution; Carbon monoxide; PM2.5; Traffic emissions; Pollution sources

资金

  1. Australian Research Council (ARC) [LP160100051]

向作者/读者索取更多资源

This study proposes a simplified method using source signatures to obtain information about local pollution sources. The research found significant differences in CO/PM2.5 ratios among different pollutant sources, suggesting that this ratio can be an effective method for identifying pollution sources.
Air pollution is among the top risk faced by people around the world, and therefore combating it is among the top priorities. It begins with identifying the sources that contribute the most to local air pollution to prioritize their control. There are advanced methods for source identification and apportionment, but such methods are not available in many low-income countries and not everywhere in all high-income countries. We propose a simplified method by using source the signatures to help obtain information about the local source contribution if no other methods are available. Using low-cost monitors, particle mass (PM2.5) and carbon monoxide (CO) concentrations were measured and the ratio of CO/PM2.5 was determined. We investigated outdoor and indoor sources, including vehicular exhaust, combustion of biomass, incense and mosquito coil burning, and cigarette smoking. The results show that the ratios differed significantly between certain pollutant sources. Compressed natural gas (CNG) engines have a high ratio (mean value of 972 +/- 419), which is attributed to relatively low PM2.5 emissions, while ship emissions and cigarette smoke recorded a relatively low ratio. Most traffic emissions recorded higher ratios than those of bushfire emissions, and ratios of most outdoor pollutant sources were much higher than those of indoor pollutant sources. There is a clear trend for ratios to decrease from high to low for CNG, petrol, diesel for buses, and fuel for ships. Our results suggest that the ratio of CO/PM2.5 can be used as an effective method to identify pollution sources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据