4.7 Article

Green synthesis and characterization of silver nanoparticles from Acacia nilotica and their anticancer, antidiabetic and antioxidant efficacy

期刊

ENVIRONMENTAL POLLUTION
卷 304, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2022.119249

关键词

Silver nitrate; MTT assay; a-glucosidase; DPPH assay; SEM; XRD

资金

  1. Higher Education Commission of Pakistan

向作者/读者索取更多资源

Both cancer and diabetes are serious health issues with a high mortality rate worldwide. This study investigates the use of plant-mediated nanoparticles for the treatment of these diseases. Silver nanoparticles (AgNPs) were synthesized from Acacia nilotica bark extract and characterized using standard techniques. The study found that the plant-mediated AgNPs showed potential as an anticancer, antidiabetic, and antioxidant agent. Further research is needed to understand the molecular mechanisms behind the therapeutic effects.
Both cancer and diabetes mellitus are serious health issues, accounting more than 11 million deaths worldwide annually. Targeted use of plant-mediated nanoparticles (NPs) in treatment of ailments has outstanding results due to their salient properties. The current study was designed to investigate the safe production of silver nanoparticles (AgNPs) from Acacia nilotica. Different concentrations of AgNO3 were tested to optimize the protocol for the synthesis of AgNPs from the bark extract. It was demonstrated that 0.1 M and 3 mM were found to be the optimum concentrations for the synthesis of AgNPs. Standard characterization techniques such as UV-vis spectrophotometry, SEM, SEM-EDX micrograph, spot analysis, elemental mapping and XRD were used for the conformation of biosynthesis of AgNPs. Absorption spectrum of plant-mediated AgNPs under UV-vis spectrophotometer showed a strong peak at 380 nm and 420 nm for AgNPs synthesized at 0.1 M and 3 mM concentration of salt. The SEM results showed that AgNPs were present in variable shapes within average particle size ranging from (20-50 nm). Anticancer, antidiabetic and antioxidant potential of green AgNPs was investigated and they showed promising results as compared to the positive and negative controls. Hence, AgNPs were found potent therapeutic agent against the human liver cancer cell lines (HepG2), strong inhibitor for alpha-glucosidase enzyme activity and scavenging agent against free radicals that cause oxidative stress. Further studies are however needed to confirm the molecular mechanism and biochemical reactions responsible for the anticancer and antidiabetic activities of the particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据