4.7 Article

Thermodynamic improvement of solar driven gasification compared to conventional one

期刊

ENERGY
卷 261, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.124953

关键词

Equivalence ratio; Steam gasification; Cold gas efficiency; Water conversion; Gibbs energy

向作者/读者索取更多资源

The thermodynamic study of driving biomass gasification using medium temperature solar technology reveals the highest cold gas efficiency in solar driven supercritical water gasification, demonstrating its potential in this integration.
The driving of biomass gasification with the heat provided by medium temperature solar technology is thermodynamically studied to understand principally the theoretical potential of this integration in terms of cold gas efficiency and gas composition, without considering kinetic aspects and not breaking down in detail plant solutions and energy balances of plant components. In medium temperature solar driven gasification, solar heat is used to heat the gasification medium up to a temperature of 500 degrees C. The considered conventional gasification technologies are air gasification, air-steam gasification, allothermal steam gasification and supercritical water gasification. In air gasification the investigated independent variable is the equivalence ratio. In air-steam and allothermal steam gasification, the investigated independent variable is the steam/biomass ratio. In supercritical water gasification the investigated independent variable is the organic feed concentration. Gasification temperature was set at 800 degrees C for air-steam gasification and allothermal steam gasification; it was set at 600 degrees C for supercritical water gasification. The main dependent variable detected are dry gas yield, gas composition and heating value, char residue. The highest cold gas efficiency was calculated in the case of solar driven supercritical water gasification, it was 91%, when the organic feed concentration was 20 wt %.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据