4.7 Article

Deep learning-based multi-task prediction system for plant disease and species detection

期刊

ECOLOGICAL INFORMATICS
卷 69, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ecoinf.2022.101679

关键词

Plant classification; Multi-task learning; Transfer learning; Deep neural networks; Convolutional neural networks

类别

向作者/读者索取更多资源

The manual prediction of plant species and diseases is costly and time-consuming, and expertise may not always be available. Automated approaches, such as machine learning and deep learning, are being used to overcome these challenges. This study proposes a novel multi-task learning approach that combines plant species and disease prediction tasks using shared representations. The results show that this approach improves efficiency and learning speed.
The manual prediction of plant species and plant diseases is expensive, time-consuming, and requires expertise that is not always available. Automated approaches, including machine learning and deep learning, are increasingly being applied to surmount these challenges. For this, accurate models are needed to provide reliable predictions and guide the decision-making process. So far, these two problems have been addressed separately, and likewise, separate models have been developed for each of these two problems, but considering that plant species and plant disease prediction are often related tasks, they can be considered together. We therefore propose and validate a novel approach based on the multi-task learning strategy, using shared representations between these related tasks, because they perform better than individual models. We apply a multi-input network that uses raw images and transferred deep features extracted from a pre-trained deep model to predict each plant's type and disease. We develop an end-to-end multi-task model that carries out more than one learning task at a time and combines the Convolutional Neural Network (CNN) features and transferred features. We then evaluate this model using public datasets. The results of our experiments demonstrated that this Multi Input Multi-Task Neural Network model increases efficiency and yields faster learning for similar detection tasks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据