4.7 Article

A two-stage adaptive thresholding segmentation for noisy low-contrast images

期刊

ECOLOGICAL INFORMATICS
卷 69, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ecoinf.2022.101632

关键词

Plankton image processing; Adaptive thresholding; 2-stage thresholding

类别

资金

  1. National Key Research and Develop-ment Program of China [2017YFC1403600]
  2. Shandong Provin-cial Key Research and Development Program [2019JZZY020708]

向作者/读者索取更多资源

Image binarization is a crucial and challenging step in image recognition. This study proposes a 2-stage adaptive binarization approach to improve the integrity of jellyfish extraction in underwater images and enhance hardware resource utilization and computational efficiency.
Image recognition is the process of recognizing and classifying objects with machine learning algorithms. Image binarization is the first and most challenging step in image recognition, in which foreground objects are separated from their background. When foreground objects have complex morphological structure and background noise is strong, foreground objects are often being fractured into subcomponents. To address the over segmentation issue of organisms with complex structures, we propose a 2-stage adaptive binarization approach based on Sauvola's binarization algorithm. We tested the effectiveness of the new approach on a set of underwater images with jellyfish collected in nearshore waters using a shadowgraph underwater plankton imaging system, PlanktonScope, because jellyfish have relatively complex structure and are often over-segemented. The results showed that the 2-stage approach improved the integrity of extracted jellyfish compared to traditional binarization methods, including Sauvola's algorithm. The analysis of local entropy values showed that the first stage effectively suppresses redundant information in the image and reduces the number of Region of Interests (ROIs), and the second stage preserves relatively weak and low-intensity signals to ensure the integrity of the extracted targets. The 2-stage approach improves hardware resource utilization and computational efficiency. It is robust for images acquired in sub-optimal conditions and enhances the accuracy of analytical results in the study of marine organisms using imaging systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据