4.7 Article

Bayesian Physics Informed Neural Networks for real-world nonlinear dynamical systems

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2022.115346

关键词

Dynamical systems; Machine learning; Neural Networks; Physics Informed Neural Networks; Bayesian Inference; Bayesian Neural Networks

资金

  1. DAAD Fellowship, Germany
  2. MURI/ARO, United States [W911NF-15-1-0562]
  3. Stanford School of Engineering COVID-19 Research and Assistance Fund, United States
  4. Stanford Bio-X IIP seed, United States

向作者/读者索取更多资源

Understanding real-world dynamical phenomena is challenging, and machine learning has become the go-to technology for analyzing and making decisions based on these phenomena. However, traditional neural networks often ignore the fundamental laws of physics and fail to make accurate predictions. In this study, the combination of neural networks, physics informed modeling, and Bayesian inference is used to integrate data, physics, and uncertainties, improving the predictive potential of neural network models.
Understanding real-world dynamical phenomena remains a challenging task. Across various scientific disciplines, machine learning has advanced as the go-to technology to analyze nonlinear dynamical systems, identify patterns in big data, and make decision around them. Neural networks are now consistently used as universal function approximators for data with underlying mechanisms that are incompletely understood or exceedingly complex. However, neural networks alone ignore the fundamental laws of physics and often fail to make plausible predictions. Here we integrate data, physics, and uncertainties by combining neural networks, physics informed modeling, and Bayesian inference to improve the predictive potential of traditional neural network models. We embed the physical model of a damped harmonic oscillator into a fully-connected feed-forward neural network to explore a simple and illustrative model system, the outbreak dynamics of COVID-19. Our Physics Informed Neural Networks seamlessly integrate data and physics, robustly solve forward and inverse problems, and perform well for both interpolation and extrapolation, even for a small amount of noisy and incomplete data. At only minor additional cost, they self-adaptively learn the weighting between data and physics. They can serve as priors in a Bayesian Inference, and provide credible intervals for uncertainty quantification. Our study reveals the inherent advantages and disadvantages of Neural Networks, Bayesian Inference, and a combination of both and provides valuable guidelines for model selection. While we have only demonstrated these different approaches for the simple model problem of a seasonal endemic infectious disease, we anticipate that the underlying concepts and trends generalize to more complex disease conditions and, more broadly, to a wide variety of nonlinear dynamical systems. Our source code and examples are available at https://github.com/LivingMatterLab/x PINNs.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据