4.7 Article

Influences of charge properties and hydrophobicity on the coagulation of inorganic and organic matters from water associated with starch-based coagulants*

期刊

CHEMOSPHERE
卷 298, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.134346

关键词

Starch-based coagulants; Charge properties; Hydrophobicity; Dissolved organic matters; Turbidity; Coagulation mechanism

资金

  1. National Natural Science Foundation of China [42061144014, 51978325]
  2. Quanzhou City Science & Technology Program of China [2021CT001]

向作者/读者索取更多资源

In this study, a series of binary graft cationic starch-based coagulants with different hydrophobicities and charge densities were prepared and their coagulation performance was tested in simulated polluted water. It was found that coagulants with higher charge densities and stronger hydrophobicities exhibited better coagulation performance.
In this work, two series of binary graft cationic starch-based coagulants (CS-DMCs and CS-DMLs) with different hydrophobicities and charge densities (CDs) were prepared by graft copolymerization of acrylamide with 2-(methacryloyloxy)-N,N,N- trimethylethanaminium chloride and acryloyloxyethyl dimethyl benzyl ammonium chloride, respectively, on the starch (St) backbone. Kaolin particles, sodium humate (NaHA), and bovine serum albumin (BSA) were used as the simulated sources of inorganic colloidal particles and different organic pollutants in the micropolluted turbid surface water. The influences of the CD and hydrophobicity associated with the Stbased coagulants on the removal of kaolin particles, NaHA, and BSA from single, binary, and ternary pollutant aqueous systems were investigated systematically. On the basis of the apparent coagulation performance, the floc characteristics, and the zeta potentials of the supernatants after coagulation, the coagulation mechanisms associated with the structural features of the St-based coagulants and the pollutants treated were explored and discussed in detail. The St-based coagulants with a higher CD and a stronger hydrophobicity showed better coagulation performance due to the synergistic effects of charge neutralization and hydrophobic association. The maximum efficiencies of the optimized St-based coagulant in removal of Kaolin, NaHA and BSA were 93.85%, 100% and 97.52% in their respective single pollutant systems. In addition to these simulated water samples, a real micropolluted turbid surface water tested and compared, further confirming the superiority of the hydrophobically modified cationic St-based coagulants, especially in the purification of organic pollutants in water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据