4.7 Article

Challenges and issues with the performance of boron nitride rooted membrane for gas separation

期刊

CHEMOSPHERE
卷 308, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.136002

关键词

2-D materials; Boron nitride; Rooted membrane; Modelling and simulation; Interfacial voids; National University of Sciences and Technology

资金

  1. National University of Sciences and Technology, Pakistan
  2. Higher Education Commission (HEC) , Pakistan [10032/Fed- eral/NRPU/R D/HEC/2017]

向作者/读者索取更多资源

This review focuses on the incorporation of various fillers into polymers to improve gas separation properties. It highlights the potential of hexagonal boron nitride (h-BN) as a replacement for conventional fillers, due to its high aspect ratio, good compatibility with polymers, enhanced gas barrier performance, and improved mechanical properties. The review also discusses mathematical models used to predict the performance of polymer composites in gas separation.
Various fillers such as zeolites, metal-organic framework, carbon, metal framework, graphene, and covalent organic framework have been incorporated into the polymers. However, these materials are facing issues such as incompatibility with the polymer matrix, which leads to the formation of non-selective voids and thus, reduces the gas separation properties. Recent studies show that hexagonal boron nitride (h-BN) possesses attractive characteristics such as high aspect ratio, good compatibility with polymer materials, enhanced gas barrier performance, and improved mechanical properties, which could make h-BN the potential candidate to replace conventional fillers. The synthesis of materials and membranes is the subject of this review, which focuses on recent developments and ongoing problems. Additionally, a summary of the mathematical models that were utilised to forecast how well polymer composites would perform in gas separation is provided. It was found in the previous studies that tortuosity is the governing factor for the determination of the effectiveness of a nanofiller as a gas barrier enhancer in polymer matrices. The shape of the nanofiller particles and sheets, disorientation and distribution of the nanofillers within the polymer matrix, state of aggregation and rate of reaggregation of the nanofiller particles, as well as the compatibility of the nanofiller with the polymer matrix all played a significant role in determining how well a particular nanofiller will perform in enhancing the gas barrier properties of the nanocomposites. For this purpose, this review has been focused not only on the experimentation work but also on the effect of tortuosity, exfoliation quality, compatibility, disorientation, and reaggregation of nanofillers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据