4.8 Article

Effects of Electronic Coupling on Bright and Dark Excitons in a 2D Array of Strongly Confined CsPbBr3 Quantum Dots

期刊

CHEMISTRY OF MATERIALS
卷 34, 期 16, 页码 7181-7189

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.2c00683

关键词

-

资金

  1. National Science Foundation [CHE-2003961]
  2. Texas AM University
  3. Institute for Basic Science [IBS-R026-D1]

向作者/读者索取更多资源

Investigated the photoluminescence properties of strongly quantum confined CsPbBr3 quantum dots at low temperatures, and found that electronic coupling between dots can cause redshift of photoluminescence, narrowing of bright-dark exciton level splitting, and acceleration of photoluminescence decay.
In contrast to the weakly confined quantum dots dominated by bright excitons, strongly quantum confined CsPbBr3 QDs exhibit both bright and dark exciton photoluminescence (PL) at cryogenic temperatures, making them a unique source of photons and charges of two very different natures. Here, we investigate the effect of inter-QD electronic coupling on the relative energetics and dynamics of the bright and dark excitons, which dictate the PL properties of the coupled arrays of these QDs at low temperatures. For this purpose, we fabricated 2D close-packed arrays of NaBr-passivated CsPbBr3 QDs with a sub-nanomter facet-to-facet distance, which was necessary to introduce electronic coupling. In addition to the redshift of the PL due to electronic coupling, the electronically coupled array of strongly confined CsPbBr3 QDs exhibited narrowed bright-dark level splitting and an acceleration of the decay of both bright and dark exciton PL at cryogenic temperatures. These observations are qualitatively analogous to the effects of increasing the volume of noninteracting QDs, which can be explained by the delocalization of exciton wave function among the coupled QDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据