4.8 Review

Light-Matter Interactions in Hybrid Material Metasurfaces

期刊

CHEMICAL REVIEWS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.2c00011

关键词

-

资金

  1. Vannevar Bush Faculty Fellowship from the U.S. Department of Defense (DOD) [N00014-17-1-3023]
  2. Office of Naval Research [ONRN00014-21-1-2289]
  3. National Science Foundation [DMR-1904385, 27464]
  4. Cottrell Fellowship from the Research Corporation for Science Advancement [CHE-2039044]

向作者/读者索取更多资源

This review discusses the integration of plasmonic and dielectric metasurfaces with emissive or stimuli-responsive materials, enabling control of light-matter interactions at the nanoscale. Metasurfaces offer the ability to manipulate electromagnetic waves at the subwavelength level, while the combination with nanoscale emitters allows for enhanced photoluminescence, nanoscale lasing, controlled quantum emission, and formation of exciton-polaritons. Additionally, the use of functional materials that respond to external stimuli enables the engineering of tunable nanophotonic devices. Emerging metasurface designs, such as surface-functionalized, chemically tunable, and multilayer hybrid metasurfaces, hold promise for various applications including photocatalysis, sensing, displays, and quantum information.
This Review focuses on the integration of plasmonic and dielectric metasurfaces with emissive or stimuli-responsive materials for manipulating light-matter interactions at the nanoscale. Metasurfaces, engineered planar structures with rationally designed building blocks, can change the local phase and intensity of electromagnetic waves at the subwavelength unit level and offers more degrees of freedom to control the flow of light. A combination of metasurfaces and nanoscale emitters facilitates access to weak and strong coupling regimes for enhanced photoluminescence, nanoscale lasing, controlled quantum emission, and formation of exciton-polaritons. In addition to emissive materials, functional materials that respond to external stimuli can be combined with metasurfaces to engineer tunable nanophotonic devices. Emerging metasurface designs including surface-functionalized, chemically tunable, and multilayer hybrid metasurfaces open prospects for diverse applications, including photocatalysis, sensing, displays, and quantum information.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据