4.8 Review

Energy Versus Electron Transfer: Managing Excited-State Interactions in Perovskite Nanocrystal-Molecular Hybrids

期刊

CHEMICAL REVIEWS
卷 122, 期 15, 页码 12475-12494

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.2c00172

关键词

-

资金

  1. ND Energy
  2. Center for Environmental Science and Technology Predoctoral Research Fellowship at Notre Dame
  3. Division of Chemical Sciences, Geosciences, and Biosciences, O ffi ce of Basic Energy Sciences of the U.S. Department of Energy
  4. Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FC02- 04ER15533]

向作者/读者索取更多资源

Research shows that halide perovskite nanocrystals have high emission yield and strong light absorption, playing a crucial role in energy and electron transfer processes in light energy conversion. This perspective discusses the key factors influencing the excited-state pathways in these nanocrystals and the differences between energy and electron transfer processes. Spectroscopic methods for deciphering complex photoinduced pathways are also presented.
ABSTRACT: Energy and electron transfer processes in light harvesting assemblies dictate the outcome of the overall light energy conversion process. Halide perovskite nanocrystals such as CsPbBr3 with relatively high emission yield and strong light absorption can transfer singlet and triplet energy to surface-bound acceptor molecules. They can also induce photocatalytic reduction and oxidation by selectively transferring electrons and holes across the nanocrystal interface. This perspective discusses key factors dictating these excited-state pathways in perovskite nanocrystals and the fundamental differences between energy and electron transfer processes. Spectroscopic methods to decipher between these complex photoinduced pathways are presented. A basic understanding of the fundamental differences between the two excited deactivation processes (charge and energy transfer) and ways to modulate them should enable design of more efficient light harvesting assemblies with semiconductor and molecular systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据