4.8 Review

Self-Healing Injectable Hydrogels for Tissue Regeneration

期刊

CHEMICAL REVIEWS
卷 123, 期 2, 页码 834-873

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.2c00179

关键词

-

向作者/读者索取更多资源

Biomaterials that can self-heal and maintain their structural integrity have significant advantages in biomedicine. Self-healing injectable hydrogels, a new type of biomaterial, have emerged in the past decade. These hydrogels can temporarily fluidize and then recover their mechanical properties under shear stress. They can be administered locally and minimally invasively, and have moldable properties for personalized medicine. Additionally, they facilitate tissue regeneration through their viscoelastic and diffusive nature. However, challenges remain in balancing self-healing and injectability with physical stability, establishing consensus on rheological characterization, and translating them into therapeutically effective formulations for specific tissues.
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据