4.7 Article

Synthesis and application of amine-functionalized MgFe2O4-biochar for the adsorption and immobilization of Cd(II) and Pb(II)

期刊

CHEMICAL ENGINEERING JOURNAL
卷 439, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.135785

关键词

Amine-functionalized biochar; Adsorption; Immobilization; Heavy metal; Mechanism

资金

  1. National Key Research and Develop-ment Program of China [2020YFC1808503]
  2. National Natural Science Foundation of China [42077133, 42007127, 41877025]
  3. Natural Science Foundation of Hubei Province of China [2020CFA013]

向作者/读者索取更多资源

This study successfully synthesized an amine-functionalized magnesium ferrite-biochar composite and investigated its performance and mechanisms for removing or immobilizing heavy metals in wastewater and polluted soils. The mechanisms in wastewater treatment primarily involved complexation and ion exchange, while in soils polluted by heavy metals, immobilization was achieved through electrostatic attraction, precipitation, and complexation. This new type of biochar composite has shown effectiveness in simultaneously removing and immobilizing heavy metals in wastewater and soil.
Biochar composites have been widely applied to wastewater and soil remediation due to their advantages of high efficiency, controllability and recyclability. Many studies have demonstrated the application potential of biochar, but little is known about the process and mechanism of surface functionalization of biochar. In this study, an amine-functionalized magnesium ferrite-biochar composite (MgFe2O4-NH2@sRHB) was first synthesized by coprecipitation and then used as a remediation agent to remove heavy metals from aqueous solution and immobilize heavy metals in polluted soils. The results revealed the performance and mechanisms for MgFe2O4-NH2@sRHB to remove or immobilize heavy metals from wastewater or in polluted soils. In wastewater treatment, the mechanisms primarily involved complexation and ion exchange as well as pore filling and electrostatic attraction, and Cd(II) and Pb(II) were adsorbed through a monolayer on the surface of MgFe2O4-NH2@sRHB, with the maximum adsorption capacity reaching 195.50 and 198.93 mg g(-1), respectively. In the treatment of soils polluted by heavy metals, MgFe2O4-NH2@sRHB facilitated the transformation of exchangeable Cd to residual and Fe-Mn bound Cd. The addition of 1% MgFe2O4-NH2@sRHB decreased the concentration of exchangeable Cd from 21.0% to 15.2%, 14.8%, 14.8% and 14.6% after 7, 14, 21 and 35 days of treatment, respectively. Electrostatic attraction, precipitation and complexation contributed substantially to the immobilization of heavy metals in the soil. This study provides a new type of biochar composite that can effectively remove and immobilize heavy metals in wastewater and soil at the same time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据