4.7 Article

Sr2CeO4 as a robust high temperature sorbent for CO2 capture with near 100% sorbent conversion efficiency

期刊

CHEMICAL ENGINEERING JOURNAL
卷 441, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.135942

关键词

Sr2CeO4; High temperature sorbent; SrO based CO2 sorbent; CO2 capture

资金

  1. National Natural Science Foundation of China [51906100]

向作者/读者索取更多资源

In this study, high temperature sorbent SrO was prepared with sol-gel method and the effect of different support materials on the reactivity stability was evaluated. It was found that CeO2 supported sorbent exhibited super stable CO2 capture performance, enabling carbonation/calcination at a lower temperature and improving microstructure and sintering resistance.
As a typical CO2 capture and storage (CCS) technology, sorbent looping CO2 capture (SLCC) can be incorporated into CO2-related processes to enable potential revenue. The main challenge of the SLCC is the poor reactivity stability and limited operation temperature of sorbent. High temperature sorbent of SrO was prepared with sol-gel method and the carbonation/calcination performance was evaluated in thermogravimetry. The effect of different support materials (Al2O3, Y2O3, MgO, CeO2 and ZrO2) on the reactivity stability was initially evaluated during 25 carbonation/calcination cycles. The CeO2 supported sorbent exhibited super stable CO2 capture performance, whereas other materials could not stabilize the sorbent reactivity over multiple cycles. Afterwards, the effect of CeO2 loading on the sorbent reactivity, microstructure and phase transition was further identified. The results indicate that the Ce-Sr interaction induced new decarbonation path of SrCO3 + CeO2 = Sr2CeO4 + CO2 instead of conventional thermal sorbent decomposition of SrCO3 = SrO + CO2. It promoted the reaction kinetic and enabled the carbonation/calcination at a lower temperature. Also, it improved the microstructure and the sintering resistance, promoting sorbent reactivity stability. The ratio of Ce/Sr higher than 0.5 was necessary to obtain a stable CO2 capture performance with almost 100% sorbent efficiency over multiple cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据