4.7 Article

High-performance cellulose nanofiber-derived composite films for efficient thermal management of flexible electronic devices

期刊

CHEMICAL ENGINEERING JOURNAL
卷 439, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.135675

关键词

Thermal management; Flexible electronic devices; Cellulose nanofiber; Graphite nanoplatelet

资金

  1. National Natural Science Foundation of China (NSFC) for the Distinguished Young Scholars [51825602]

向作者/读者索取更多资源

Heat dissipation materials are crucial for thermal management in high-power-density flexible electronic devices. Conventional materials often fail to meet the required thermal conductivity and mechanical properties simultaneously, and enhancing their performance usually involves complex procedures. In this study, a simple and robust synthesis method was developed to create a high-performance thermal management material by processing natural cellulose nanofibers and graphite nanoplatelets.
Heat dissipation material shows great promise as a thermal management tool for high-power-density flexible electronic devices. However, conventional materials (e.g., metals, carbon materials, and polymer-based composites) typically are difficult to meet the required thermal conductivity and mechanical properties at the same time. Additionally, performance enhancement of the heat-dissipating materials generally requires complicated procedures with high manufacturing costs. Here, we design a facile and robust synthesis procedure by processing all-natural cellulose nanofiber (CNF) and graphite nanoplatelet (GNP) to generate a high-performance sustainable thermal management material. The obtained CNF-GNP composite film contains extensive heat transfer highways and highly aligned hydrogen bonds in its brick-and-mortar microstructure. Consequently, the CNF-GNP-40 film exhibits high thermal conductivity (21.42 W m- 1 K-1), high strength (115.8 MPa), high toughness (4.19 MJ m(-3)), low density (similar to 1.3 g cm(-3)), and super flexibility simultaneously. Besides, the composite film possesses excellent stability after multiple cycles of mechanical deformation and exposure to various environments. Taking the thermal management of wearable devices as an example, experimental results reveal that applying the composite film can effectively reduce the temperature of both device and skin by about 8 degrees C on average, making it a prospective thermal management material for flexible electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据