4.4 Article

Chemical engineering at crossroads

期刊

CANADIAN JOURNAL OF CHEMICAL ENGINEERING
卷 100, 期 9, 页码 2011-2027

出版社

WILEY
DOI: 10.1002/cjce.24506

关键词

computational fluid dynamics; computational chemistry; energy; environment; modelling and simulation

向作者/读者索取更多资源

Through introspection and assessment, the chemical engineering field has developed a mature undergraduate curriculum that equips engineers with skills in transport, reaction engineering, and thermodynamics. However, there is a need to adapt the curriculum to meet the needs of established industries while nurturing innovators for emerging industries, without harming the field unintentionally.
Through periodic introspection and assessment, the chemical engineering field has developed a mature undergraduate curriculum built on a strong science background in mathematics, physics, and chemistry. This brings a unique set of skills in transport, reaction engineering, and thermodynamics, coupled with suitable process systems engineering and process design courses, to supply well-trained engineers to a vast array of process manufacturing facilities. These facilities produce basic chemicals, pharmaceuticals, oil and gas, petrochemicals, food and agricultural products, minerals, and materials. While this maturity has served existing industries well, we argue that the chemical engineering field is at crossroads between managing the curriculum of undergraduate and graduate education to supply the needs of established industries while creating innovators for emerging industries. While this is a great opportunity for yet another introspection, we caution that the inadvertent cannibalization of the field must be avoided. We do argue in favour of adding a biology sequence and a computational science sequence to the core at the undergraduate level in a related perspective article.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据