4.6 Article

Multi-objective optimal design and seismic assessment of an inerter-based hybrid control system for storage tanks

期刊

BULLETIN OF EARTHQUAKE ENGINEERING
卷 21, 期 3, 页码 1481-1507

出版社

SPRINGER
DOI: 10.1007/s10518-022-01457-1

关键词

Cylindrical tanks; Impulsive motion; Convective modes; Multi-objective optimal design; Hybrid control system (HCS); Base isolation system (BIS); Tuned mass damper inerter (TMDI); Inerter device; Base excitation

向作者/读者索取更多资源

This paper proposes a hybrid control system combined with a base isolation system and a tuned mass damper inerter for the protection of steel storage tanks from seismic damages. The effectiveness of the system is assessed through optimal design and parametric analysis.
In this paper, a hybrid control system (HCS) endowing a base isolation system (BIS) with a Tuned Mass Damper Inerter (TMDI) is proposed for the protection of steel storage tanks from severe structural damages induced by seismic events. Among all the components of industrial plants, cylindrical steel storage tanks are widely spread and play a primary role when subjected to seismic hazard, since they suffer of many critical issues related to their dynamic response such as high convective wave height and base shear force. The adopted base isolation system is realized with spring and damper elements, whereas the TMDI is realized with a tuned mass damper connected to the ground by the inerter. The developed mechanical model consists of a MDOF system, which considers the impulsive and convective modes as well as the TMDI dynamics. An optimal design problem is tackled, making use of a multi-objective approach, with the scope to mitigate simultaneously the convective and impulsive response of the storage tank. A zero mean white noise excitation is assumed as input in the optimal design procedure. Once the HCS is optimally designed, a systematic investigation of its seismic effectiveness is reached through parametric analysis. Modal parameters and frequency response functions are discussed. A literature case study comparing the effectiveness of the proposed optimally designed HCS with traditional base isolation is illustrated and performances are assessed through stochastic excitation and natural earthquakes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据