4.7 Article

MicroRNA-210-mediated mtROS confer hypoxia-induced suppression of STOCs in ovine uterine arteries

期刊

BRITISH JOURNAL OF PHARMACOLOGY
卷 179, 期 19, 页码 4640-4654

出版社

WILEY
DOI: 10.1111/bph.15914

关键词

Ca2+ sparks; hypoxia; mitochondria; pre-eclampsia; pregnancy; reactive oxygen species; STOCs

资金

  1. National Institutes of Health [HD083132, HL128209, HL137649, HL149608]

向作者/读者索取更多资源

This study demonstrates a novel mechanistic role for the miR-210-ISCU-mtROS axis in inhibiting Ca2+ sparks/STOCs in the maladaptation of uterine arteries and provides new insights into the understanding of mitochondrial perturbations in the pathogenesis of pregnancy complications resulted from hypoxia.
Background and Purpose: Hypoxia during pregnancy is associated with increased uterine vascular resistance and elevated blood pressure both in women and female sheep. A previous study demonstrated a causal role of microRNA-210 (miR-210) in gestational hypoxia-induced suppression of Ca2+ sparks/spontaneous transient outward currents (STOCs) in ovine uterine arteries, but the underlying mechanisms remain undetermined. We tested the hypothesis that miR-210 perturbs mitochondrial metabolism and increases mitochondrial reactive oxygen species (mtROS) that confer hypoxia-induced suppression of STOCs in uterine arteries. Experimental Approach: Resistance-sized uterine arteries were isolated from near-term pregnant sheep and were treated ex vivo in normoxia and hypoxia (10.5% O-2) for 48 h. Key Results: Hypoxia increased mtROS and suppressed mitochondrial respiration in uterine arteries, which were also produced by miR-210 mimic to normoxic arteries and blocked by antagomir miR-210-LNA in hypoxic arteries. Hypoxia or miR-210 mimic inhibited Ca2+ sparks/STOCs and increased uterine arterial myogenic tone, which were inhibited by the mitochondria-targeted antioxidant MitoQ. Hypoxia and miR-210 down-regulated iron-sulfur cluster scaffold protein (ISCU) in uterine arteries and knockdown of ISCU via siRNAs suppressed mitochondrial respiration, increased mtROS, and inhibited STOCs. In addition, blockade of mitochondrial electron transport chain with antimycin and rotenone inhibited large-conductance Ca2+-activated K+ channels, decreased STOCs and increased uterine arterial myogenic tone. Conclusion and Implications: This study demonstrates a novel mechanistic role for the miR-210-ISCU-mtROS axis in inhibiting Ca2+ sparks/STOCs in the maladaptation of uterine arteries and provides new insights into the understanding of mitochondrial perturbations in the pathogenesis of pregnancy complications resulted from hypoxia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据