4.7 Article

STNN-DDI: a Substructure-aware Tensor Neural Network to predict Drug-Drug Interactions

期刊

BRIEFINGS IN BIOINFORMATICS
卷 23, 期 4, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bib/bbac209

关键词

Tensor Neural Network; drug-drug interactions; substructure-substructure interactions; multi-type interactions

资金

  1. National Nature Science Foundation of China [61872297]
  2. Shaanxi Provincial Key Research & Development Program, China [2020KW-063]

向作者/读者索取更多资源

This paper proposes a novel Substructure-aware Tensor Neural Network (STNN-DDI) model for predicting multiple-type drug-drug interactions (DDIs). By learning the associations between the local chemical structures of drugs and their DDI types, the STNN-DDI model achieves accurate DDI prediction and provides explanations for the interaction mechanisms among drugs.
Computational prediction of multiple-type drug-drug interaction (DDI) helps reduce unexpected side effects in poly-drug treatments. Although existing computational approaches achieve inspiring results, they ignore to study which local structures of drugs cause DDIs, and their interpretability is still weak. In this paper, by supposing that the interactions between two given drugs are caused by their local chemical structures (substructures) and their DDI types are determined by the linkages between different substructure sets, we design a novel Substructure-aware Tensor Neural Network model for DDI prediction (STNN-DDI). The proposed model learns a 3-D tensor of < substructure, substructure, interaction type > triplets, which characterizes a substructure-substructure interaction (SSI) space. According to a list of predefined substructures with specific chemical meanings, the mapping of drugs into this SSI space enables STNN-DDI to perform the multiple-type DDI prediction in both transductive and inductive scenarios in a unified form with an explicable manner. The comparison with deep learning-based state-of-the-art baselines demonstrates the superiority of STNN-DDI with the significant improvement of AUC, AUPR, Accuracy and Precision. More importantly, case studies illustrate its interpretability by both revealing an important substructure pair across drugs regarding a DDI type of interest and uncovering interaction type-specific substructure pairs in a given DDI. In summary, STNN-DDI provides an effective approach to predicting DDIs as well as explaining the interaction mechanisms among drugs. Source code is freely available at https://github.com/zsy-9/STNN-DDI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据