4.7 Article

Neurovascular injury with complement activation and inflammation in COVID-19

期刊

BRAIN
卷 145, 期 7, 页码 2555-2568

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awac151

关键词

COVID-19; SARS-CoV-2; neurovascular injury; complement deposition; neuroinflammation

资金

  1. Division of Intramural Research from NINDS, NIH [NS003130, K23NS109284]
  2. Roy J. Carver Foundation
  3. Iowa Neuroscience Institute

向作者/读者索取更多资源

This autopsy study reveals the underlying mechanisms of brain microvascular pathology in patients with COVID-19, including vascular leakage, platelet aggregation, neuroinflammation, and neuronal injury, which are likely initiated by antibody-mediated cytotoxicity against brain endothelial cells.
The underlying mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to acute and long-term neurological manifestations remains obscure. We aimed to characterize the neuropathological changes in patients with coronavirus disease 2019 and determine the underlying pathophysiological mechanisms. In this autopsy study of the brain, we characterized the vascular pathology, the neuroinflammatory changes and cellular and humoral immune responses by immunohistochemistry. All patients died during the first wave of the pandemic from March to July 2020. All patients were adults who died after a short duration of the infection, some had died suddenly with minimal respiratory involvement. Infection with SARS-CoV-2 was confirmed on ante-mortem or post-mortem testing. Descriptive analysis of the pathological changes and quantitative analyses of the infiltrates and vascular changes were performed. All patients had multifocal vascular damage as determined by leakage of serum proteins into the brain parenchyma. This was accompanied by widespread endothelial cell activation. Platelet aggregates and microthrombi were found adherent to the endothelial cells along vascular lumina. Immune complexes with activation of the classical complement pathway were found on the endothelial cells and platelets. Perivascular infiltrates consisted of predominantly macrophages and some CD8(+) T cells. Only rare CD4(+) T cells and CD20(+) B cells were present. Astrogliosis was also prominent in the perivascular regions. Microglial nodules were predominant in the hindbrain, which were associated with focal neuronal loss and neuronophagia. Antibody-mediated cytotoxicity directed against the endothelial cells is the most likely initiating event that leads to vascular leakage, platelet aggregation, neuroinflammation and neuronal injury. Therapeutic modalities directed against immune complexes should be considered. Lee et al. examine microvascular pathology in the brains of patients who died from COVID-19. They show that antibody-mediated cytotoxicity directed against brain endothelial cells is likely to be the initiating event that leads to vascular leakage, platelet aggregation, neuroinflammation and neuronal injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据