4.7 Article

Impact of fetal exposure to mycotoxins on longissimus muscle fiber hypertrophy and miRNA profile

期刊

BMC GENOMICS
卷 23, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-022-08794-0

关键词

Sheep; Mycotoxin; Muscle fiber; Hypertrophy; miRNA

资金

  1. NIFA/USDA [SC1700537]
  2. USDA Agriculture Food Research Initiative competitive grant [2015-67015-23218]
  3. Clemson University Division of Research
  4. NIH EPIC COBRE Award [P20GM109094]
  5. NIH SCBiocraft COBRE Award [5P20RR021949-03]
  6. Clemson University Department of Chemical and Biomolecular Engineering
  7. National Institute of General Medical Sciences of the National Institutes of Health [P20GM109094]

向作者/读者索取更多资源

This study investigated the impact of in utero mycotoxin exposure on skeletal muscle fiber hypertrophy and the miRNA profile in lambs. The results showed that exposure to mycotoxins did not alter fiber type but had long-term effects on postnatal muscle hypertrophy and cross-sectional area. Additionally, developmental age influenced the miRNA transcriptome and mRNA expression of genes related to muscle growth.
Background Longissimus muscle samples were collected from lambs exposed in utero to mycotoxins [E-, endophyte-free tall fescue seed without ergot alkaloids (negative control) or E + , endophyte-infected tall fescue seed containing ergot alkaloids] during mid-gestation (MID; E + /E-) or late-gestation (LATE; E-/E +) harvested at two developmental stages (FETAL, gestational d133) or (MAT, near maturity, 250 d of age; n = 3/treatment/developmental stage). Muscle samples were examined to determine the impact of in utero mycotoxin exposure on skeletal muscle fiber hypertrophy and the miRNA profile at FETAL and MAT. Results Longissimus weight was greater (P < 0.05) in E + /E- lambs compared to E-/E + lambs at MAT; however, FETAL longissimus weight did not differ (P > 0.10) between fescue treatments. Type I fiber cross sectional area was larger (P < 0.10) for E + /E- than E-/E + at MAT but did not differ (P > 0.10) between fescue treatments at FETAL. Type II fiber area was larger (P < 0.05) at MAT in E + /E- compared to E-/E + but did not differ (P < 0.05) between fescue treatments at FETAL. Cross-sectional Type I and Type II longissimus muscle fiber area increased (P < 0.05) from FETAL to MAT by 6.86-fold and 10.83-fold, respectively. The ratio of Type II:Type I muscle fibers was lower (P = 0.04) at MAT compared to FETAL. There were 120 miRNA differentially expressed (q < 0.05) between FETAL and MAT. Maternal fescue treatment did not alter (q > 0.05) expression of miRNAs in the longissimus muscle. miR-133, -29a, -22-3p, and -410-3p were identified as highly significant with a log(2) fold change > 4. In vitro satellite cell cultures showed that selected miRNAs (miR-22-3p, 29a, 27a, and 133a) are differentially regulated during proliferation and differentiation indicating a role of miRNA in muscle hypertrophy. Conclusions Exposure to mycotoxins did not alter fiber type but had long-term impacts on postnatal muscle hypertrophy and cross-sectional area. The miRNA profile of the longissimus was not altered by Maternal mycotoxin exposure at FETAL or MAT. Developmental age altered the miRNA transcriptome and mRNA expression of known genes related to muscle growth. These results indicate that Maternal exposure to E + fescue seed during LATE gestation can alter postnatal muscle hypertrophy in sheep; however, these changes are not regulated by the miRNA transcriptome of the longissimus muscle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据