4.7 Article

Stage-specific miRNAs regulate gene expression associated with growth, development and parasite-host interaction during the intra-mammalian migration of the zoonotic helminth parasite Fasciola hepatica

期刊

BMC GENOMICS
卷 23, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-022-08644-z

关键词

Fasciola hepatica; Helminth; microRNAs; Newly excysted juvenile; Cathepsin L3

资金

  1. Australian Research Council Discovery Project [DP210101337]
  2. Australian Government RTPS Scholarship
  3. Science Foundation Ireland (SFI) [17/RP/5368]
  4. Science Foundation Ireland (SFI) [17/RP/5368] Funding Source: Science Foundation Ireland (SFI)

向作者/读者索取更多资源

This study describes the miRNAs expressed by different developmental stages of the parasitic worm Fasciola hepatica and identifies new genes and miRNAs involved in parasite development and metabolic pathways. These findings provide novel insight into the regulation of helminth parasite development and have implications for therapeutic development.
Background MiRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression in organisms ranging from viruses to mammals. There is great relevance in understanding how miRNAs regulate genes involved in the growth, development, and maturation of the many parasitic worms (helminths) that together afflict more than 2 billion people. Results Here, we describe the miRNAs expressed by each of the predominant intra-mammalian development stages of Fasciola hepatica, a foodborne flatworm that infects a wide range of mammals worldwide, most importantly humans and their livestock. A total of 124 miRNAs were profiled, 72 of which had been previously reported and three of which were conserved miRNA sequences described here for the first time. The remaining 49 miRNAs were novel sequences of which, 31 were conserved with F. gigantica and the remaining 18 were specific to F. hepatica. The newly excysted juveniles express 22 unique miRNAs while the immature liver and mature bile duct stages each express 16 unique miRNAs. We discovered several sequence variant miRNAs (IsomiRs) as well as miRNA clusters that exhibit strict temporal expression paralleling parasite development. Target analysis revealed the close association between miRNA expression and stage-specific changes in the transcriptome; for example, we identified specific miRNAs that target parasite proteases known to be essential for intestinal wall penetration (cathepsin L3). Moreover, we demonstrate that miRNAs fine-tune the expression of genes involved in the metabolic pathways that allow the parasites to move from an aerobic external environment to the anerobic environment of the host. Conclusions These results provide novel insight into the regulation of helminth parasite development and identifies new genes and miRNAs for therapeutic development to limit the virulence and pathogenesis caused by F. hepatica.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据